首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

2.
Necessary and sufficient conditions are found in order for the system of successive primitives $$\left\{ {F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_{k - n} }}{{k!}}z^k } } \right\}, n = 0,1,2, ...,$$ generated by the integer-valued function \(F_n (z) = \sum\nolimits_{k = 0}^\infty {\frac{{a_k }}{{k!}}zk} \) of growth no higher than first order of the normal typeσ(F0(z) ε [1;σ] to form a quasi-power basis in the class [1; σ].  相似文献   

3.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

4.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

5.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

6.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

7.
8.
LetB σ be the class of entire functions of exponential type σ, real valued and bounded in modulus by 1 in the real line. A setG of functions defined on the segment [-T-r, T+r], wherer is a fixed positive number, is called an (ε, δ)-net of the classB σ on the segment [-т, т] if for any f?B σ there existsg?G such that for anyx?[-T,T] $$\left| {f(x) - g(x)} \right| \leqq \frac{\varepsilon }{{2r}}\int\limits_{x - r}^{x + r} {\left| {f(t)} \right|dt + \delta .} $$ The main result consists in the following: For any positive σ, r, ε≦1, δ≦1 and sufficiently largeT we have $$H_{\varepsilon ,\delta } (B_\sigma ,T) \leqq \frac{{2\sigma T}}{\pi }\log \frac{{c(\sigma r)}}{{\max (\varepsilon ,\delta )}},$$ where c(σr) depends only on the product σr. The main tool of the proof of this inequality is the following estimate of the derivative of a polynomialP(x) with real coefficients: $$\left\| {P'(x)} \right\|_{L_p ( - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}) \leqq } c\left( {q + 1 + \sum\limits_{i = 1}^{n - q} {\frac{1}{{\left| {a_i } \right|^2 }}} } \right)\left\| {P(x} \right\|_{L_p ( - 1,1)} ,$$ whereq is the number of roots of the polynomialP(x) lying in the disk ¦z¦<1; a1, ..., an?g are the other roots, с is an absolute constant, and 1≦p≦∞.  相似文献   

9.
The following result is proved. Theorem.Let λ n ,0<λ n ↑∞, be a sequence of positive numbers with finite density $$\sigma = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{\lambda _n }}$$ and let a compact set K has the following property: it intersects the real axis along the interval [a, b], where a is the very left point of K, B is the very right point of K; furthermore, K intersects every vertical straight line Re z=α, a≤α≤b, along an interval. If 1) $$F(z) \in [1,S_{ - \pi \sigma }^{\pi \sigma } \cup K(\alpha + i\pi \sigma ) \cup K(\alpha - i\pi \sigma )], \alpha \in R;$$ 2) 2) $$F( \pm \lambda _n ) = 0, n = 1,2,...,$$ then $$F(z) = A(z)e^{\alpha z} \alpha (z),$$ where $$A(z) \in [1,K], \alpha (z) = \prod\limits_1^\pi {\left( {1 - \frac{{z^2 }}{{\lambda _n^2 }}} \right)}$$ . This result generalizes the theorem of Kaz'min [3]. Three corollaries are also proved, which generalize the theorems ofBoas [1] andPólya [6]. In the theorems of Boas and Pólya, we haveF(n)=0, ?n ε Z. In our case $$F( \pm \lambda _n ) = 0, 0< \lambda _n \uparrow \infty , \sigma = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{\lambda _n }}$$ .  相似文献   

10.
Let σ n 2 (f, x) be the Cesàro means of second order of the Fourier expansion of the function f. Upper bounds of the deviationf(x)-σ n 2 (f, x) are studied in the metricC, while f runs over the class \(\bar W^1 C\) , i. e., of the deviation $$F_n^2 (\bar W^1 ,C) = \mathop {\sup }\limits_{f \in \bar W^1 C} \left\| {f(x) - \sigma _n^2 (f,x)} \right\|_c$$ . It is proved that the function $$g^* (x) = \frac{4}{\pi }\mathop \sum \limits_{v = 0}^\infty ( - 1)^v \frac{{\cos (2v + 1)x}}{{(2v + 1)^2 }}$$ , for whichg *′(x)=sign cosx, satisfies the following asymptotic relation: $$F_n^2 (\bar W^1 ,C) = g^* (0) - \sigma _n^2 (g^* ,0) + O\left( {\frac{1}{{n^4 }}} \right)$$ , i.e.g * is close to the extremal function. This makes it possible to find some of the first terms in the asymptotic formula for \(F_n^2 (\bar W^1 ,C)\) asn → ∞. The corresponding problem for approximation in the metricL is also considered.  相似文献   

11.
12.
Рассматривается последовательность преобразований Рисс а степенного ряда $$f(z) = \sum\limits_{v = 0}^\infty {\alpha _v z^n } ,$$ задаваемая формулой $$\sigma _n (z) = \sum\limits_{k = 0}^\infty {{\textstyle{{Pk} \over {P_n }}}s_k (z)} ,$$ гдеs k (z) — частная сумма порядкаk рядаf, a {p k } — комплексная послед овательность, для которой $$P_n = \sum\limits_{k = 0}^n {p_k \ne 0, n = 0,1,2,... .}$$ Показано, что число ну лей полиномовσ n в кру ге ¦z¦ <R связано при определе нных условиях лакунарнос ти с порядком роста {σn} и с их сверхсходимостью.  相似文献   

13.
We consider an initial-boundary-value problem for the nonlinear Schrödinger equation in the complexvalued functionE=E(x,z): (1) $\partial _z E + i\Delta E + i\alpha \left| E \right|^p E + \beta \left| E \right|^q E = 0, q > p \geqslant 0, \beta > 0,$ (2) $\left. E \right|_{z = 0} = E_0 \in H^2 (\Omega ) \cap H_0^1 (\Omega ), \left. E \right|_{\partial \Omega } = 0, \Omega \subset R^2 , \partial \Omega \in C^2 .$ We investigate the behavior of the solution of problem (1)–(2) as β→0 and its closeness to the solution of the degenerate equation (β=0). Given the consistency conditionq(β)=p+εln(1/β), 00, we establish boundedness of the norm $\left\| E \right\|_{C([0,z_0 ]):H_0^1 (\Omega ))} + \left\| {\partial _z E} \right\|_{C([0,z_0 ]);L^2 (\Omega ))} $ for every finitez 0>0 as β→0. For α≤0 and a fixedq, we prove uniform (in β) boundness of solutions of problem (1)–(2) on some interval [0,Z] and their convergence as β→0 to the solution of the degenerate problem (β=0) in the normC([0,Z];L 2 (Ω)).  相似文献   

14.
ПустьΦN-функция Юнг а со свойствами $$\Phi (x)x^{ - 1} \downarrow 0, \exists \alpha > 1 \Phi (x)x^{ - \alpha } \uparrow (x \downarrow 0),$$ илиΦ(х)=х, {λk} — положи тельная, неубывающая последовательность и $$S_\Phi \{ \lambda \} = \left\{ {f:\left\| {\sum\limits_{k = 0}^\infty \Phi (\lambda _k |f - s_k |)} \right\|_\infty< \infty } \right\}.$$ В работе найдены необ ходимые и достаточны е условия для вложений $$S_\Phi \{ \lambda \} \subset W^r F(r \geqq 0),$$ , гдеF=C, L , Lip α (0<α≦1). С этой то чки зрения рассматриваются и др угие классы (например, \(W^r H^\omega ,\tilde W^r F\) ).  相似文献   

15.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

16.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

17.
We obtain conditions for the completeness of the system {G(z)e τz , τ ≤ 0} in the space H σ 2 (?+), 0 < σ < + ∞, of functions analytic in the right-hand half-plane for which $$\parallel f\parallel : = \mathop {\sup }\limits_{ - \pi /2 < \varphi < \pi /2} \left\{ {\int_0^{ + \infty } {|f(re^{i\varphi } )|^2 } e^{ - 2r\sigma |\sin \varphi |} dr} \right\}^{1/2} < + \infty $$ .  相似文献   

18.
Говорят, что ряд \(\mathop \sum \limits_{k = 0}^\infty a_k \) сумм ируется к s в смысле (С, gа), gа >?1, если $$\sigma _n^{(k)} - s = o(1),n \to \infty ,$$ в смысле [C,α] λ , α<0, λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {\sigma _k^{(\alpha - 1)} - s} \right|^\lambda = o(1),n \to \infty ,$$ и в смысле [C,0] λ , λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {(k + 1)(s_k - 1) - k(s_{k - 1} - 1)} \right|^\lambda = o(1),n \to \infty ,$$ где σ n (α) обозначаетn-ое ч езаровское среднее р яда. Суммируемость [C,α] λ , α>?1, λ ≧1 о значает, что $$\mathop \sum \limits_{k = 0}^\infty k^{\lambda - 1} \left| {\sigma _k^{(\alpha )} - \sigma _{k - 1}^{(\alpha )} } \right|^\lambda< \infty .$$ В данной статье содер жится продолжение ис следований свойств [C,α] λ -суммиру емо сти, которые начали Винн, Х ислоп, Флетт, Танович-М иллер и автор, в частности свя зей между указанными методами суммирования. Наконец, даны некотор ые простые приложени я к вопросам суммируемости ортог ональных рядов.  相似文献   

19.
The author considers $$f(z) = \exp (g(z)) = \sum\limits_{j = 0}^\infty {a_j z^j ,}$$ , whereg(z) is a real, entire, transcendental function admissible in the sense of W. K. Hayman [(1956): Reine Angew. Math.,196:67-95]. The aim of the paper is to study, asm→+∞, the distribution of the zeros of the partial sums $$s_m (z) = \sum\limits_{j = 0}^m {a_j z^j .}$$ The results are stated in terms of Hayman's auxiliary functions Ifr>0 is large enough, botha(r) andb(r) are positive,a(r) is strictly increasing, and $$a(r) \to + \infty ,b(r) \to + \infty (r \to + \infty ).$$ Define the sequence (R m ) (m>m 0) by the relationsa(R m )=m. From the following proposition, typical of those stated in the paper, it is easy to deduce accurate information regarding those zeros ofs m (z) that lie near the positive axis: Letζ be an auxiliary complex variable; then asm→+∞, and forR=R m , the functions $$\left\{ {1 + \zeta \left( {\frac{2}{{b(R)}}} \right)^{1/2} } \right\}^{ - m} \{ f(R)\} ^{ - 1} s_m \left( {R\left( {1 + \zeta \left( {\frac{2}{{b(R)}}} \right)^{1/2} } \right)} \right)$$ tend to $$\frac{1}{2}e^{\zeta ^2 } \left( {1 - \frac{2}{{\sqrt \pi }}\int_0^\zeta {e^{ - \sigma ^2 } d\sigma } } \right)$$ uniformly on every compact subset of theζ-plane. There are similar, equally precise, results covering those zeros ofs m (z) that lie near any rayte i?(0<t<+∞,?≠0).  相似文献   

20.
In this paper, sufficient conditions are obtained for oscillation of a class of nonlinear fourth order mixed neutral differential equations of the form (E) $$\left( {\frac{1} {{a\left( t \right)}}\left( {\left( {y\left( t \right) + p\left( t \right)y\left( {t - \tau } \right)} \right)^{\prime \prime } } \right)^\alpha } \right)^{\prime \prime } = q\left( t \right)f\left( {y\left( {t - \sigma _1 } \right)} \right) + r\left( t \right)g\left( {y\left( {t + \sigma _2 } \right)} \right)$$ under the assumption $$\int\limits_0^\infty {\left( {a\left( t \right)} \right)^{\tfrac{1} {\alpha }} dt} = \infty .$$ where α is a ratio of odd positive integers. (E) is studied for various ranges of p(t).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号