首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baoan Fan  Xiangli Liu 《Solid State Ionics》2009,180(14-16):973-977
A-deficit La0.54Sr0.44Co0.2Fe0.8O3 ? δ cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) was synthesized by a citrate complexation (Pechini) route. Using La0.54Sr0.44Co0.2Fe0.8O3 ? δ as cathode material, a superior cell performance with the maximum power density of 309, 470 and 855 mW cm? 2 at 600, 650 and 700 °C was achieved, in contrast with the maximum power density of 266, 354 and 589 mW cm? 2 using conventional La0.6Sr0.4Co0.2Fe0.8O3 ? δ as cathode material at the same temperatures. The reason of this improvement was analyzed on the basis of defect chemistry. Thermal shrinkage experiment testified that the oxygen vacancies in La0.54Sr0.44Co0.2Fe0.8O3 ? δ are more mobile than in La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Furthermore, theoretical calculation in terms of their composition and the shift of peak position in XRD pattern showed that the concentration of oxygen vacancies of La0.54Sr0.44Co0.2Fe0.8O3 ? δ is higher than that of La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Therefore, the oxygen ion conductivity via vacancies transfer mechanism is enhanced, which induces the polarization resistance of La0.54Sr0.44Co0.2Fe0.8O3 ? δ being decreased with a result of cell performance improved.  相似文献   

2.
As for the commonly studied La0.6Sr0.4Co0.2Fe0.8O3-δ (6428), here, a very low area-specific resistance (ASR) was measured for La0.6Sr0.4Co0.8Fe0.2O3-δ (6482) cathode deposited on a Ce0.9Gd0.1O2-δ (GDC) electrolyte with addition of a thin (1 μm) dense LSCF film deposited by spin coating at the interface between the GDC electrolyte and a 40-μm-thick screen-printed electrode. The ASR ranged from 1 Ω.cm2 at 500 °C, 0.11 Ω.cm2 at 625 °C and value as low as 0.03 Ω.cm2 at 700 °C. Impedance spectra collected in between 500 and 700 °C were carefully studied. They could all be modelled with two R//CPE in series which are likely associated to the oxygen reduction reaction itself (dissociation/adsorption/ionization) at low frequency and to the oxide ion transfer at the electrode/electrolyte interface at high frequency.  相似文献   

3.
Ba0.5Sr0.5[CoxZn0.2-x]Fe0.8O3?C??, (x?=?0, 0.04, 0.08, 0.12) cathode formulations were successfully synthesized by solid state reactions and the effect of cobalt doping at Zn site of Ba0.5Sr0.5Zn0.2Fe0.8O3?C?? (BSZF0.2) on the electrical conductivity, the polarization resistance and electrochemical behavior was evaluated. X-ray diffraction patterns indicate that a single cubic perovskite phase of Ba0.5Sr0.4Co0.8Fe0.2O3?C?? oxide is successfully obtained. Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3?C?? (BSCZF0.16) exhibited a high electrical conductivity of 10 S/cm at 400 °C in comparison to the BSZF0.2 showing 5.5 S/cm. Further, BSCZF0.16 also possess a low polarization resistance as low as 0.22, 0.38, 0.87, and 1.55 ?? cm2 at 750, 700, 650, and 600 °C in air, respectively. Accordingly, a low activation energy value of 149.8 kJ/mol for BSCZF0.16 in comparison to 159.4 kJ/mol for BSZF0.2 indicates high catalytic efficiency. Enhancement of desirable properties such as electrical conductivity in combination with low-polarization resistance and low-activation energy values can be attributed to the coexistence of Co and Zn in the B-site of BSCZF0.16 leading to the multivalent states which contributes to the enhanced electron transport properties demonstrating BSCZF0.16 as a better cathode for intermediate temperature solid oxide fuel cells applications.  相似文献   

4.
Polycrystalline samples of Pr1−x Sr x Fe0.8Co0.2 O3−δ (x=0.1, 0.2, 0.3) (PSFC) were prepared by the combustion synthesis route at 1200°C. The structure of the polycrystalline powders was analysed with X-ray powder diffraction data. The X-ray diffraction (XRD) patterns were indexed as the orthoferrite similar to that of PrFeO3 having a single-phase orthorhombic perovskite structure (Pbnm). Pr1−x Sr x Fe0.8Co0.2O3−δ (x=0.1, 0.2, 0.3) films have been deposited on yttria-stabilized zirconia (YSZ) single-crystal substrates at 700°C by pulsed laser deposition (PLD) for application to thin film solid oxide fuel cell cathodes. The structure of the films was analysed by XRD, scanning electron microscopy (SEM) and atomic force microscopy (AFM). All films are polycrystalline with a marked texture and present pyramidal grains in the surface with different size distributions. Electrochemical impedance spectroscopy (EIS) measurements of PSFC/YSZ single crystal/PSFC test cells were conducted. The Pr0.7Sr0.3Fe0.8Co0.2O3−δ film at 850°C presents a lower area specific resistance (ASR) value, 1.65 Ω cm2, followed by the Pr0.8Sr0.2Fe0.8Co0.2O3−δ (2.29 Ω cm2 at 850°C) and the Pr0.9Sr0.1Fe0.8Co0.2O3−δ films (5.45 Ω cm2 at 850°C).  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1965-1968
The time-dependent degradation of anode-supported Solid Oxide Fuel Cells (SOFCs) with La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes has been studied. Eight SOFCs have been tested over a period of 1000 h under different operation conditions to investigate the influence of different operation parameters on the degradation of the electrochemical performance. The cells were tested at 700 or 800 °C, at 0.3 or 0.6 A/cm2 and with 21% or 5% O2 at the cathode side and showed performance losses of 2–4% per 1000 h. While an elevated temperature and an elevated oxygen partial pressure had a negative influence on long-term performance, the current density did not have a clear effect. Material analysis of the cells showed a formation of SrZrO3 at the interface of the Ce0.8Gd0.2O2−δ interlayer and the yttria stabilized zirconia (8YSZ) electrolyte during sintering of the cathode. There are indications of a further formation of this phase during the electrochemical characterization obtained from X-ray diffraction analysis on LSCF–YSZ powder mixtures that were exposed to 800 °C for 200 h.  相似文献   

6.
Effect of preparation method for Pr0.6Sr0.4Co0.2Fe0.8O δ (PSCF) on its electrochemical performance was investigated. Powder samples were synthesized by hexamethylenetetramine (HMTA) and EDTA-citric acid (EC) techniques, respectively. The particles synthesized by HMTA were smaller than those prepared by EC method as proved by TEM. X-ray photoelectron spectroscopy illuminated that more oxygen sites including oxygen vacancy on the surface of HMTA-derived PSCF exist than that of EC-derived PSCF. The area specific resistance (ASR) value of HMTA-derived PSCF cathode was as low as 0.454 Ω cm2 at 600 °C, whereas the ASR value of EC-derived PSCF was 0.641 Ω cm2. The results in the present study demonstrated the advantages of the HMTA method in the synthesis of highly catalytic active PSCF oxide powder for SOFCs.  相似文献   

7.
Anode supported thick film ceria electrolyte unit cells were fabricated using a colloidal dip coating method for IT-SOFCs. Pre-sintering temperature of the anode substrate and the final sintering temperature were found to be the primary parameters determining the density of the film. With Ni-Ce0.89Gd0.11 O2–δ cermet anode, La0.6Sr0.4Co0.2Fe0.8O3 cathode and 15 μm Ce0.89Gd0.11 O2–δ electrolyte, the cells were tested in a fuel cell configuration with air at the cathode and moist H2 at the anode. At 650 °C, the cell indicated a maximum power density of ∼0.27 W/cm2 at a current density of 0.62 A/cm2. Cell performance was compared with oxygen at the cathode and the cell indicated a maximum power density of ∼0.50 W/cm2 at 1.14 A/cm2, 650 °C. Activation energy for the area specific resistance (ASR) of the cell suggests that with air at cathode, the cell performance was limited by gaseous diffusion at cathode and with oxygen at cathode, by oxygen ion transport across the electrolyte.  相似文献   

8.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

9.
A series of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials were synthesized through co-oxidation-controlled crystallization method followed by solid-state reaction at different calcination temperatures under oxygen flowing. The crystal structure and particles morphology of the as-prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. All samples correspond to the layered α-NaFeO2 structure with R-3m space group. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C presents a better hexagonal ordering structure and better spherical particles and possesses a high tap density of 3.22 g cm?3. Meanwhile, the NCT-2 sample exhibits an advanced electrochemical performance with an initial discharge capacity of 174.2 mAh g?1 and capacity retention of 86.7 % after 30 cycles at 0.2 C.  相似文献   

10.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

11.
(Ni0.6Co0.2Mn0.2)(OH)2 precursor has been successfully prepared using hydroxide co-precipitation method. The thermodynamic model of hydroxide co-precipitation with sodium DL-lactate as an eco-friendly chelating agent is proposed. The microstructures of (Ni0.6Co0.2Mn0.2)(OH)2 precursors and Li(Ni0.6Co0.2Mn0.2)O2 cathode materials are investigated using X-ray diffractometer and scanning electronic microscopy, while the electrochemical performances of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials are measured using a charge–discharge test. The influences of pH value on the structure and morphological and electrochemical performances of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials have been discussed in detail. The results show that the sample at pH?=?11.5 exhibits the best lamellar structure and lowest cation mixing, while the sample at pH?=?11.0 delivers the most uniform and full particles and possesses the highest initial charge–discharge performance of 183.4 mAh/g and the best coulombic efficiency of 77.9% at the voltage range of 3.0–4.3 V. Even after 100 cycles, its discharge capacity still remains 165.2 mAh/g with the best retention rate of 90.1%. Furthermore, the sample at pH?=?11.0 delivers the highest discharge capacity at each current density. Even if discharged at 5C (1000 mA/g), the capacity of 115.6 mAh/g has been achieved. The sample at pH?=?11.0 exhibits the highest Li-ion diffusion coefficients (2.072?×?10?12 cm2/s).  相似文献   

12.
Fine and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a glycine–nitrate combustion process. La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes were prepared on dense Ce0.8Sm0.2O2−δ electrolyte substrates using a spin-coating technique by sintering at 900–1,000 °C. The electrode properties of La0.6Sr0.4Co0.2Fe0.8O3−δ were investigated by electrochemical impedance spectroscopy and chronopotentiometry techniques with respect to preparation conditions and the resulting microstructures. The results indicate a significant effect of the microstructure on the electrode processes and polarization characteristics. The oxygen adsorption and dissociation process acted as a larger contribution to the overall electrode polarization R p in magnitude compared with the charge transfer process due to relatively low porosity levels of the electrodes. It was detected that the grain size of the electrodes exhibited a crucial role on the electrocatalytic reactivity. At 800 °C, the electrode sintered at 950 °C attained a polarization resistance of 0.18 Ω cm2, an overpotential of 27 mV at a current density of 200 mA cm−2, and an exchange current density of 308 mA cm−2.  相似文献   

13.
Songlin Wang 《Ionics》2012,18(8):777-780
A cobalt-free Ba0.5Sr0.5Fe0.9Nb0.1O3??? (BSFNb) perovskite-type oxide was investigated as the cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) with Sm0.2Ce0.8O1.9 (SDC) electrolyte. XRD results showed that BSFNb cathode was chemically compatible with the electrolyte SDC up to 1,000?°C. The maximum output of anode-supported thin-film SOFC reached 503?mW?cm?2 at 650?°C when employing humidified H2 as fuel and static air as oxidizer. The electrode polarization resistance was low as 0.078????cm2 at 650?°C, and the activation energy of the electrode polarization resistance was 129.72?kJ?mol?1. The experimental results indicated that the cobalt-free BSFNb was a promising cathode candidate for IT-SOFCs.  相似文献   

14.
A series of nano-crystalline ceria-based solid solution electrolyte, Ce0.8La0.2?x MgxO2?δ (x?=?0.0, 0.05, 0.10, 0.15, and 0.2), were synthesized via the polyvinyl alcohol (PVA) assisted combustion method, and then characterized to the crystalline structure, powder morphology, sintering micro-structure, and electrical properties. Present study showed that Ce0.8La0.2?x Mg x O2?δ was exceedingly stable as a cubic phase in all temperature range and exhibited fine crystals ranging from 15 to 20 nm. After sintering at 1,400 °C, the as-prepared pellets exhibited a dense micro-structure with 96 % of theoretical density. The electrical conductivity was studied using AC impedance spectroscopy and it was observed that the composition Ce0.8La0.1?Mg0.1O2?δ showed higher electrical conductivity of 0.020 S?cm?1 at 700 °C. The thermal expansion was measured using dilatometer technique in the temperature range 30–1,000 °C. The average thermal expansion coefficient of Ce0.8La0.1?Mg0.1O2?δ was 12.37?×?10?6 K?1, which was higher than that of the commonly used SOFC electrolyte YSZ (~10.8?×?10?6 K?1).  相似文献   

15.
Li Zhao  Wenyi Tan  Qin Zhong 《Ionics》2013,19(12):1745-1750
A series of BaCe0.8???x Zr x Y0.2O3???δ (BCZYx) (x?=?0, 0.2, 0.4, 0.6, 0.8) powders were prepared by EDTA–citrate complexing sol–gel process in this paper. The electrical conducting behavior, as well as chemical stability, was investigated. X-ray diffraction (XRD) results reveal that all samples are homogenous perovskite phases. Observed from XRD patterns and thermogravimetric curves, the samples with x?≥?0.4 survive in the pure CO2, while samples with various Zr contents all present structurally stable against steam at 800 °C. The Zr-free sample of BaCe0.8Y0.2O3???δ possesses the maximum bulk conductivity, 4.25?×?10?2 S/cm, but decomposes into Ba(OH)2 and Ce0.8Y0.2O3???δ in steam. A negative influence of increasing Zr content on the conductivity of BCZYx can be observed by impedance tests. Considering the effect of temperature on the bulk conductivity, BCZY0.4 is preferred to be applied in SOFC as a protonic conductor, ranging from 1.52?×?10?4 to 1.51?×?10?3 S/cm (500–850 °C) with E a?=?0.859 eV, which is proved to be a good protonic conductor with t H+?≥?0.9.  相似文献   

16.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

17.
《Solid State Ionics》2006,177(11-12):1027-1031
LiNi0.8Co0.2O2 and Ca-doped LiNi0.8Co0.2O2 cathode materials were synthesized via a rheological phase reaction method. It is found that the Ca doping significantly improves reversible capacity, cycling performance, thermal stability and rate capability. The Ca-doped LiNi0.8Co0.2O2 cathode material maintains nearly its initial discharge capacity up to 100 cycles at room temperature. It also delivers an initial discharge capacity of 183 mA h g 1 and still keeps 131 mA h g 1 even after 120 cycles at 60 °C. These results, together with the X-ray diffraction and electrochemical impedance spectroscopy analysis, reveal that Ca2+ ions occupy Li+ ion sites to form CaLi defects and lithium vacancies (VLi′), which reduce the resistance and increases conductivity of LiNi0.8Co0.2O2.  相似文献   

18.
La0.6Sr0.4CoxFe1−xO3−δ (LSCF), La0.6Sr0.4Cu0.2Fe0.8O3−δ, Ba0.5Sr0.4Co0.8Fe0.2O3−δ and LaFeO3−δ nanoparticles were synthesized by a reverse micelle procedure. Controlling the size of the micelles through the water:oil phase ratio enabled synthesis of phase pure perovskite particles with average sizes from 14 nm to 50 nm. Small amounts of an impurity phase, likely cobalt oxide, were detected in the XRD spectrum of high cobalt content samples of LSCF (x = 0.8). La0.6Sr0.4Co0.2Fe0.8O3−δ nanoparticles were utilized to coat the surface of a dense thin-film La0.6Sr0.4Co0.2Fe0.8O3−δ solid oxide fuel cell cathode. The polarization resistance of the nanoparticle coated electrode, measured at open circuit in air at 973 K, was 20% lower than an equivalent un-coated electrode.  相似文献   

19.
《Solid State Ionics》2006,177(35-36):3211-3216
Anode-supported SOFCs involving LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ)-based cathodes are fabricated utilizing GDC interlayer on 8YSZ electrolyte for intermediate temperatures. The GDC interlayer between the LSCF cathode and YSZ electrolyte is used to prevent formation of insulating phases such as SrZrO3 or La2Zr2O7. The cell performance with the GDC interlayer was ten times better than the one without GDC at operating temperature of 750 °C. However, the observed power density (370 mW/cm2) was lower than the value reported in the literature. This can be attributed to an imperfect GDC interlayer in the present study. The GDC interlayer was porous and non-uniform, so that adverse interfacial reactions could not be completely prevented. The chemical incompatibility at the interface was evaluated by SEM and EPMA, which explains the dependence of cell performance on sintering temperatures of the GDC interlayer.  相似文献   

20.
Layered lithium ion battery cathode material LiNi1/3Co1/3Mn1/3O2 with uniform particle size of about 6 μm was synthesized by a spray pyrolysis method. Infrared and X-ray diffraction analyses show that the pyrolysis at 1,000 °C for 2 s in the tube furnace eliminates nearly all the organic components but is still not enough for the complete crystallization of LiNi1/3Co1/3Mn1/3O2 materials. Therefore, further annealing at 850 °C is needed. The prepared LiNi1/3Co1/3Mn1/3O2 cathode materials show excellent electrochemical performances. By increasing the C-rates, the cell shows discharge capacities of 159.3, 148.2, 133.7, and 125.7 mAh g?1 at 0.1, 0.2, 0.5, and 1C rates, respectively. Only 2.1 mAh g?1 capacity loss is observed when back to 0.1C rate. Moreover, LiNi1/3Co1/3Mn1/3O2 cathode retains 96, 97.7, 97.1, 94.5, and 97.1 % of its initial discharge capacities after 20 cycles at 0.1, 0.2, 0.5, 1, and back to 0.1C rates, respectively. More than 97 % coulombic efficiencies are observed at all the current densities in 20 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号