首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-equilibrium molecular dynamics (MD) simulations were performed to investigate the capillary evaporation of water confined in hydrophilic mesopores. The electrostatics-based (ELBA) coarse-grained water model was employed to calculate the duration of the time-consuming capillary evaporation process. To evaluate the effect of hydrophilicity of mesopores on the capillary evaporation of water, three types of thin films with a cylindrical mesopore were modelled by tuning the interactions between water and wall atoms. Initially, the cylindrical mesopore was filled with water, and evaporation of the water into vacuum was simulated. The calculation results showed that when capillary evaporation occurred, the desorption rate of water was almost constant in a highly hydrophilic mesopore where a stable water layer was formed on the pore surface, whereas the rate decreased with time in a weakly hydrophilic mesopore where the water layer did not remain stable. As time progressed, the water column shortened and then broke up. The number of water molecules in the mesopores decreased exponentially with time. The difference in the hydrophilicity of the mesopores resulted in different relaxation curves of water desorption from the mesopores.  相似文献   

2.
The electrostatics of two charged surfactant layers in aqueous media (surfactant/water/surfactant films) is investigated using molecular dynamics simulations. In the films studied (with a surfactant-surfactant distance from approximately 35 A to contact) we observe an anomalous dielectric response of water. The electrostatic potential phi(z) inside the aqueous core of the films (containing bulk water with rho=1 g/cm(3)) is completely different from that expected for a film containing a dielectric medium with the dielectric constant of water. In addition, our results are not consistent with a local relation between the water polarization P(z)(z) and the electric field E(z)(z). The polarization P(z)(z) is maximum at the interfaces (due to solvent molecules forming part of the structure of the surfactant layers) and decays from the interfaces inside the aqueous core with a decay length of order of approximately 10 A.  相似文献   

3.
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level.  相似文献   

4.
Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.  相似文献   

5.
任秀平  周波  李兰婷  王春雷 《中国物理 B》2013,22(1):16801-016801
The structure and dynamics of water in a thick film on an ionic surface are studied by molecular dynamic simulations. We find that there is a dense monolayer of water molecules in the vicinity of the surface. Water molecules within this layer not only show an upright hydrogen-down orientation, but also an upright hydrogen-up orientation. Thus, water molecules in this layer can form hydrogen bonds with water molecules in the next layer. Therefore, the two-dimensional hydrogen bond network of the first layer is disrupted, mainly due to the O atoms in this layer, which are affected by the next layer and are unstable. Moreover, these water molecules exhibit delayed dynamic behavior with relatively long residence time compared with those bulk-like molecules in the other layers. Our study should be helpful to further understand the influence of water film thickness on the interfacial water at the solid-liquid interface.  相似文献   

6.
Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.  相似文献   

7.
A new statistical model has been developed in the framework of Phase Space Theory to describe the evaporation process of non-rotating clusters. The novelty of the theoretical approach resides in its ability to easily separate the total kinetic energy released in an evaporation process into the rotational and translational contributions. This new model has been tested by comparing its predictions with the results of Molecular Dynamics (MD) simulations for the unimolecular evaporation of two types of van der Waals clusters: the aniline-(argon)n molecular clusters and the neat argon Arn clusters. Received 16 March 2000  相似文献   

8.
R.J.W.E. Lahaye 《Surface science》2010,604(13-14):1135-1142
This is a study into the scattering dynamics of the alkaline ions Cs+, K+, Na+, and Li+ from an ice surface, and the process of abstracting water molecules by the scattered ions to form ion–water clusters as a result of the ion–dipole attraction. In a classical molecular dynamics computer simulation a semi-empirical ion–water interaction potential and a modified version of the TIP3P ice model are employed.The thickness of the ice structure at the surface greatly affects the abstraction efficiency. From a thin ice overlayer all alkaline ions exhibit similar scattering probabilities, but Cs+ abstracts water molecules most efficiently; its lower speed facilitates a mechanism where the Cs+ in its outgoing trajectory pulls water molecules out of the ice structure. From a thick ice structure the scattering probabilities decrease dramatically due to an effective energy transfer to the ice structure. A more grazing angle of incidence reduces the energy transfer and enhances the scattering probabilities for the lighter alkaline ions. The deprived formation of ion–water clusters in the simulations confirms that from thick ice the cluster formation probability is reduced by at least three orders of magnitude.  相似文献   

9.
We study A-B reaction kinetics at a fixed interface separating A and B bulks. Initially, the number of reactions R(t) approximately tn(infinity)(A)n(infinity)(B) is second order in the far-field densities n(infinity)(A), n(infinity)(B). First order kinetics, governed by diffusion from the dilute bulk, onset at long times: R(t) approximately x(t)n(infinity)(A), where x(t) approximately t(1/z) is the rms molecular displacement. Below a critical dimension, d0) leads to anomalous decay of interfacial densities. Numerical simulations for z = 2 support the theory.  相似文献   

10.
The rate of dropwise evaporation is significantly altered by additives, such as benzene, n-hexane and acetone in water. These additives change some of the thermal and physical properties of the coolants, which have significant impact on various parameters that controls the droplet evaporative cooling, such as sensible, heat extraction period, droplet momentum and contact area. The open literature does not reveal the effects of the aforesaid additives on the dropwise evaporation. Therefore, in the current work, an attempt has been made to investigate the effects of above-mentioned additives on dropwise evaporation rate and reveal the mechanism involved. The droplet evaporative cooling experiments are conducted on a 2 mm thick AISI 304 steel plate (10 × 10 mm). The result shows that with increment in benzene and n-hexane concentration in water, the evaporation time significantly reduces. This is attributed to the decreasing surface tension, specific heat and contact angle. However, in case of acetone, the reduction in evaporation time is achieved only up to a concentration of 300 ppm, beyond which the evaporation time increases. This is because of the significant consumption of time in recoiling of the droplet. In addition to the above, the mechanism for the aforesaid enhancement process is tried to reveal by developing the models. For the validation of the developed equations, experimental results are compared with the numerically computed data. The comparison discloses that the developed model is quite accurate and shows insignificant variation from the experimental results. R2 and RMSE are also calculated for both the developed models and based on minimum recommended RMSE; the best model is also suggested.  相似文献   

11.
The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected "deflated balloon" structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique.  相似文献   

12.
ABSTRACT

We employ force-field molecular dynamics simulations to investigate the kinetics of nucleation to new liquid or solid phases in a dense gas of particles, seeded with ions. We use precise atomic pair interactions, with physically correct long-range behaviour, between argon atoms and protons. Time dependence of molecular cluster formation is analysed at different proton concentration, temperature and argon gas density. The modified phase transitions with proton seeding of the argon gas are identified and analysed. The seeding of the gas enhances the formation of nano-size atomic clusters and their aggregation. The strong attraction between protons and bath gas atoms stabilises large nano-clusters and the critical temperature for evaporation. An analytical model is proposed to describe the stability of argon-proton droplets and is compared with the molecular dynamics simulations.  相似文献   

13.
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e-0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water.  相似文献   

14.
15.
Long-time evolution of nanoparticles produced by short laser interactions is investigated for different materials. To better understand the mechanisms of the nanoparticle formation at a microscopic level, we use molecular dynamics (MD) simulations to analyse the evolution of a cluster in the presence of a background gas with different parameters (density and temperature). In particular, we compare the simulation results obtained for materials with different interaction potentials (Morse, Lennard-Jones, and Embedded Atom Model). Attention is focused on the evaporation and condensation processes of a cluster with different size and initial temperature. As a result of the MD calculations, we determinate the influence of both cluster properties and background gas parameters on the nanoparticle evolution. The role of the interaction potential is discussed based on the results of the simulations.  相似文献   

16.
中国夏季大气水分循环特征及再分析资料对比分析   总被引:2,自引:0,他引:2       下载免费PDF全文
苏涛  封国林 《物理学报》2014,63(24):249201-249201
大气水分循环过程耦合了降水、蒸发、水汽输送等多个环节.本文利用ERA-Interim与MERRA再分析资料,研究了中国1979—2012年夏季大气水分循环的时空变化特征及其对全球气候变化的响应,并对两套再分析资料在中国地区的适用性进行了评估.结果表明:1)中国夏季降水、蒸发、可降水量均自东南沿海地区向西北内陆递减;降水与蒸发相互联系、相互制约,由于不同地区下垫面物理条件的差异,它们之间同时存在正、负反馈的影响机制,可降水量主要集中在地面至700 h Pa高度,约占总量的75%;2)近34年大气水分循环显著变化的区域主要集中在西部和东北地区,西部内陆地区可降水量显著增加,北方大部分地区纬向水汽输送通量显著减小,西北北部地区经向水汽输送通量显著增大,蒸发量与水汽输送的气候变化可能是造成可降水量增加的主要原因;3)Interim与MERRA资料对降水量时空变化特征的再现能力要优于蒸发量,此外,它们对降水与蒸发气候变化趋势的模拟结果差别较大,使用时应该慎重;两套资料对可降水量与水汽输送通量的时空变化特征以及气候变化趋势的模拟比较一致,可信度较高;4)Interim资料对西南、东南以及东北区域夏季水循环均有较好的描述能力;而MERRA资料更适用于研究西南和西北区域的水汽收支情况.  相似文献   

17.
A recent survey of nonlinear continuous-wave (CW) EPR methods revealed that the first-harmonic absorption EPR signal, detected 90 degrees out of phase with respect to the Zeeman modulation (V(1)(')-EPR), is the most appropriate for determining spin-lattice relaxation enhancements of spin labels (V. A. Livshits, T. Páli, and D. Marsh, 1998, J. Magn. Reson. 134, 113-123). The sensitivity of such V(1)(')-EPR spectra to molecular rotational motion is investigated here by spectral simulations for nitroxyl spin labels, over the entire range of rotational correlation times. Determination of the effective spin-lattice relaxation times is less dependent on rotational mobility than for other nonlinear CW EPR methods, especially at a Zeeman modulation frequency of 25 kHz which is particularly appropriate for spin labels. This relative insensitivity to molecular motion further enhances the usefulness of the V(1)(')-EPR method. Calibrations of the out-of-phase to in-phase spectral intensity (and amplitude) ratios are given as a function of spin-lattice relaxation time, for the full range of spin-label rotational correlation times. Experimental measurements on spin labels in the slow, intermediate, and fast motional regimes of molecular rotation are used to test and validate the method.  相似文献   

18.
The isomerization and evaporation processes in the neutral homogeneous (CH3CN)n molecular clusters (n = 2-7) have been investigated using classical molecular dynamics simulations. The evaporation rate constants and the kinetic energy release in the dissociation have been analysed as a function of the cluster size and as a function of the internal energy in the parent cluster. The competition between monomer and dimer ejections has been also carefully studied. All the dynamical properties in these dissociative processes have been discussed in relation to the static properties of the clusters involved in the dissociation and also in relation to the solid-liquid like transition which appears in these homogeneous molecular clusters. Received 19 November 2002 / Received in final form 5 February 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: pascal.parneix@ppm.u-psud.fr RID="b" ID="b"Laboratoire associé à l'université Paris-Sud.  相似文献   

19.
Matrix-assisted pulsed laser evaporation (MAPLE) is a prominent member of a broad and expanding class of laser-driven deposition techniques where a matrix of volatile molecules absorbs laser irradiation and provides the driving force for the ejection and transport of the material to be deposited. The mechanisms of MAPLE are investigated in coarse-grained molecular dynamic simulations focused on establishing the physical regimes and limits of the molecular transfer from targets with different structures and compositions. The systems considered in the simulations include dilute solutions of polymer molecules and individual carbon nanotubes (CNTs), as well as continuous networks of carbon nanotubes impregnated with solvent. The polymer molecules and nanotubes are found to be ejected only in the ablation regime and are incorporated into matrix-polymer droplets generated in the process of the explosive disintegration of the overheated matrix. The ejection and deposition of droplets explain the experimental observations of complex surface morphologies in films deposited by MAPLE. In simulations performed for MAPLE targets loaded with CNTs, the ejection of individual nanotubes, CNT bundles, and tangles with sizes comparable or even exceeding the laser penetration depth is observed. The ejected CNTs align along the flow direction in the matrix plume and tend to agglomerate into bundles at the initial stage of the ablation plume expansion. In a large-scale simulation performed for a target containing a network of interconnected CNT bundles, a large tangle of CNT bundles with the total mass of 50 MDa is separated from the continuous network and entrained with the matrix plume. No significant splitting and thinning of CNT bundles in the ejection process is observed in the simulations, suggesting that fragile structural elements or molecular agglomerates with complex secondary structures may be transferred and deposited to the substrate with the MAPLE technique.  相似文献   

20.
The aim of the current numerical study is to investigate the influence of individual effects (kinetic effects, latent heat of vaporization, Marangoni convection, Stefan flow, droplet’s surface curvature) on the rate of evaporation of a water droplet placed on a highly heat conductive substrate for different sizes of the droplet (down to submicron sizes). We performed simulations for one particular set of parameters: the ambient relative air humidity is set to 70%, the ambient temperature is 20?°C, the contact angle is 90°, and the substrate material is copper. The Suggested model combines both diffusive and kinetic models of evaporation. The obtained results allow estimation of the characteristic droplet sizes where each of the mentioned above phenomena becomes important or can be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号