首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous superconducting Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state that develops above fields given by the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of the LOFF phase, which takes the form of periodic superconducting stripes running along the field direction on the surface, leading to the anisotropy of its properties. Our results provide a tool for studying surface superconductivity as a function of doping.  相似文献   

2.
We have studied the current transport and magnetism in epitaxial hybrid superconducting mesa structures consisting of a cuprate superconductor and superconducting niobium with a manganite LaMnO3 (LMO) interlayer. We have shown experimentally using magnetic resonance that the magnetization, magnetic anisotropy parameters, and transition temperature to the ferromagnetic state of the interlayer of the structures are analogous to those of an autonomous LMO film grown on a neodymium gallate substrate. The estimate of the barrier height obtained from the dependence of the characteristic resistance of mesa structures on the interlayer thickness has shown the barrier height variation with the thickness in the range of 5–30 mV. The temperature dependences of the conductivity of the mesa structure in the range between superconducting transition temperatures of the superconductors can be described in the theory taking into account the d-wave nature of the superconductivity for one of the electrodes and the spin-filtering of carriers passing through the tunnel interlayer. Spin-filtering is confirmed by the tunnel magnetoresistance and the high sensitivity of mesa structures to a weak external magnetic field in a voltage interval smaller than the gap of niobium.  相似文献   

3.
We demonstrate that in a superconducting multilayered system with alternating interlayer coupling a new type of nonuniform superconducting state can be realized under an in-plane magnetic field. The Zeeman effect in this state is compensated by the energy splitting between bonding and antibonding levels. At low temperature such a compensation mechanism leads to field-induced superconductivity. We discuss the conditions for the experimental observation of the predicted phenomena.  相似文献   

4.
We derive the parallel upper critical field, Hc2, as a function of the temperature T in quasi-2D organic compound lambda-(BETS)2FeCl4, accounting for the formation of the nonuniform Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state. To further check the 2D LOFF model, we propose to study the Hc2(T) curve at low T in tilted fields, where the vortex state is described by the high Landau level functions characterized by the index n. We predict a cascade of first-order transitions between vortex phases with different n, between phases with different types of the symmetry at given n and the change of the superconducting transition from the second order to the first order as FeCl4 ions are replaced partly by GaCl4 ions.  相似文献   

5.
We report nuclear magnetic resonance studies on the low-doped n-type copper-oxide Pr(0.91)LaCe(0.09)CuO(4-y) (T(c)=24 K) in the superconducting state and in the normal state uncovered by the application of a strong magnetic field. We find that when the superconductivity is removed the underlying ground state is the Fermi liquid state. This result is at variance with that inferred from previous thermal conductivity measurement and appears to contrast with that in p-type copper oxides with a similar doping level where high-T(c) superconductivity sets in within the pseudogap phase. The data in the superconducting state are consistent with the line-node gap model.  相似文献   

6.
In two-flavor dense quark matter, we describe the dynamics in the single plane wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state satisfying the color and electric neutrality conditions. We find that because the neutral LOFF state itself suffers from a chromomagnetic instability in the whole region where it coexists with the (gapped or gapless) two-flavor superconducting phases, it cannot cure this instability in those phases. This is unlike the recently revealed gluonic phase which seems to be able to resolve this problem.  相似文献   

7.
《Physics letters. [Part B]》2005,601(1-2):16-21
In this Letter we construct analytically a LOFF color superconducting state that is both color and charge neutral using the weak coupling approximation. We demonstrate that this state is free from chromomagnetic instabilities. Its relevance to the realistic quark matter at moderately high baryon density is discussed.  相似文献   

8.
We present specific heat and thermal conductivity of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical fieldH c2, measured with magnetic field in the plane of this quasi-2D compound and at temperatures down to 50 mK. The superconducting phase diagram and the first order nature of the superconducting phase transition at high fields close to a critical fieldH c2 indicate the importance of the Pauli limiting effect in CeCoIn5. In the same range of magnetic field we observe a second specific heat anomaly within the superconducting state, and interpret it as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. In addition, the thermal conductivity data as a function of field display a kink at a fieldH k below the superconducting critical field, which closely coincides with the low temperature anomaly in specific heat tentatively identified with the appearance of the FFLO superconducting state. The enhancement of thermal conductivity within the FFLO state calls for further theoretical investigations of the real space structure of the order parameter (and in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.  相似文献   

9.
It is shown that in rather strong magnetic field the interlayer electron conductivity is exponentially damped by the Coulomb barrier arising from the formation of polaron around each localized electron state. The theoretical model is developed to describe this effect, and the calculation of the temperature and field dependence of interlayer magnetoresistance is performed. The results obtained agree well with the experimental data in GaAs/AlGaAs heterostructures and in strongly anisotropic organic metals. The proposed theory allows to use the experiments on interlayer magnetoresistance to investigate the electron states, localized by magnetic field and disorder.  相似文献   

10.
The proximity effect and competition between the BCS and LOFF states are studied in the Cooper limit for thin F/S and F/S/F nanostructures, where F is a ferromagnet and S is a superconductor. The dependences of the critical temperature on the exchange field I, electron correlations λ f, and the thickness d f of the F layer are derived for F/S bilayers and F/S/F trilayers. In addition, two new π-phase superconducting states with electron-electron repulsion in the F layers of F/S/F trilayers are predicted. A two-dimensional LOFF state in F/S/F trilayers is possible only in the presence of a weak magnetic field and the appropriate parameters of the F and S layers. The absence of the suppression of three-dimensional superconductivity in short-period Gd/La superlattices is explained and the electron-electron coupling constant in gadolinium is predicted. A method of superconducting sounding spectroscopy based on the proximity effect is proposed for determining the symmetry of the order parameter, the magnitude and sign of electron correlations, and the exchange field in various nanomagnets F.  相似文献   

11.
Under special conditions, a superconducting state where the order parameter oscillates in real space, the so-called FFLO state, is theoretically predicted to exist near the upper critical field, as first proposed by Fulde and Ferrell, and Larkin and Ovchinnikov. We report systematic measurements of the interlayer resistance in high magnetic fields to 45 T in the two-dimensional magnetic-field-induced organic superconductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. The resistance is found to show characteristic dip structures in the superconducting state. The results are consistent with pinning interactions between the vortices penetrating the insulating layers and the order parameter of the FFLO state. This gives strong evidence for an oscillating order parameter in real space.  相似文献   

12.
自从色超导理论被提出以来, 通常考虑的是参与配对的夸克的化学势不相等时的情形。 当化学势的差别达到某一合适值时, 库柏对就有非零的总动量, 这就是Larkin Ovchinnikov Fulde Ferre(LOFF)态。 这种形式的夸克凝聚自发破坏了平移不变性和旋转不变性, 导致能隙以晶格的形式周期性变化。 在中等重子数密度区的基础上, 从SU(2) NJL模型出发描述两味LOFF态, 并通过平均场近似, 引用N G基底、 傅立叶变换和频率求和等方法得到热力学势, 进而通过热力学势对序参量求偏导得到耦合的Gap方程, 并使用数值法解耦合方程找到LOFF态的窗口。 Ever since the theory of color superconductivity was issued, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with non zero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. This article focuses on the two flavor color superconducting phase at moderate baryon density. LOFF state is described through SU(2) NJL model. By using the mean field approximation, N G basis, fourier transformation, frequency summation, the thermodynamic potential and Gap equation are obtained. Finally, the window of LOFF state is found by the numerical method.  相似文献   

13.
We report the complex optical conductivity of a superconducting thin film of Nb 0.5 Ti 0.5 N in an external magnetic field. The field was applied parallel to the film surface and the conductivity extracted from far-infrared transmission and reflection measurements. The real part shows the superconducting gap, which we observe to be suppressed by the applied magnetic field. We compare our results with the pair-breaking theory of Abrikosov and Gor'kov and confirm directly the theory's validity for the optical conductivity.  相似文献   

14.
The phase diagram and the single-domain uniform state for a uniaxial ferromagnetic film with the superconducting layers covering one or both sides of a ferromagnet are investigated. The superconductor is supposed to be a second-order one and the interaction between the magnetic sub-system and with the conductivity electrons in a superconductor is purely electromagnetic and the vortices in a superconductor are pinned. The critical thickness of the magnetic film for which the uniform state becomes absolutely stable is calculated when the external magnetic field is supposed to be in-plane of the film. It is shown that the critical thickness of the film from the magnetic material with the quality factor Q>1 monotonically decreases as the magnetic field increases in the range from zero value to the value of the transition field where the collinear phase transforms into the angular (canted) phase. Further the critical thickness increases with the increase of the field. The quasi-single-domain magnetic film states were considered when the film thickness was close to the critical one. It is shown that for a thin isolated magnetic film the domain period exponentially increases with the decrease of the film thickness. Such dependence, however for the film with double-side superconducting cover and close to the transition into the single domain state becomes logarithmic and for the film covered by superconductor only on the one side varies as the power series. The single-domain state existence and the asymptotic behaviour of the domain structure is explained by the features of the asymptotic behaviour of the domain walls within the system. As for isolated magnetic film and for a film with the superconductor cover layers the transition from the collinear phase to the inhomogeneous state is the second-order phase transition and the transition from the uniform angular phase to the inhomogeneous phase is the first-order transition.  相似文献   

15.
史良马  周明健  张晴晴  张宏彬 《物理学报》2016,65(4):47501-047501
在Ginzburg-Landan理论的框架下, 运用有限差分法研究了在圆环电流产生磁场下的介观超导圆环内的涡旋结构, 讨论了超导圆环尺寸和不同空间分布的磁场对涡旋形成的影响, 得到在一般超导圆环体内的基态多是巨涡旋态、而多涡旋态多以激发态形式存在的结论, 说明磁场一般从超导圆环的环孔穿过, 而很难穿过超导圆环体.  相似文献   

16.
The rounding of the transition curve is measured for superconducting bismuth films in a perpendicular magnetic field. The contribution of the fluctuating superconducting wave function to the conductivity aboveT c in an applied magnetic field is calculated with a simple model. The allowed states of the fluctuations are cylinders in momentum space. During their life time the fluctuating superconducting electrons can be accelerated by an electrical field and contribute to the conductivity. Experiment and theory are in fair agreement. We obtain some information about the Pauli spin paramagnetism of the electrons.  相似文献   

17.
The superconducting and magnetic states of asymmetric ferromagnet/superconductor/ferromagnet (F/S/F′) nanostructures have been investigated using the boundary value problem for the Eilenberger function. It has been shown that 0- and π-phase superconducting states of pure thin F/S/F′ trilayers are controlled by the magnitude and sign of electron correlations in the F and F′ layers, as well as by the competition between homogeneous Bardeen-Cooper-Schrieffer (BCS) pairing and inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) pairing. The LOFF-BCS-LOFF separate re-entrant superconductivity has been predicted for F/S/F′ trilayers. A continuous control of the pair-breaking factor in the Eilenberger function and transition to the state with re-entrant superconductivity is achieved by varying the thickness of the F′ layer. Sine-modulated 2D LOFF states in asymmetric F/S/F′ trilayers are possible not only for parallel, but also for antiparallel orientations of the magnetizations of the F and F′ layers; this fact significantly facilitates the experimental implementation of the predicted phenomena.  相似文献   

18.
Patterns in temperature and magnetic field behavior of the electrical resistance of nanocomposite consisting of “insulating matrix (7 nm-pore alkali-borosilicate glass)” – “granular metallic filler (indium)” (PG7+In) has been found and analyzed in the vicinity of superconducting transition. Insulating behavior in the electrical resistivity has been observed in a normal state. External magnetic field shifts the transition to lower temperatures and the same time gradually strengths the insulating behavior above the superconducting transition. Hopping conductivity mechanism developed for the granular conductor systems can be responsible for the insulating behavior in normal-state electrical resistance. Electron hopping in the granular conductor system is realized as tunneling of electrons through intergranular contacts between the metallic granules. The superconducting transition has been found to be rather broad. Broadening in the superconducting transition can be attributed to fluctuation conductivity. Above the superconducting transition, the Aslamazov-Larkin contribution to the conductivity characteristic for three-dimensional systems has been found to be main correction to the conductivity.  相似文献   

19.
We calculate the fluctuation correction to the normal state conductivity in the vicinity of a quantum phase transition from a superconducting to a normal state, induced by applying a magnetic field parallel to a dirty thin film or a nanowire with thickness smaller than the superconducting coherence length. We find that at zero temperature, where the correction comes purely from quantum fluctuations, the positive "Aslamazov-Larkin" contribution, the negative "density of states" contribution, and the "Maki-Thompson" interference contribution are all of the same order and the total correction is negative. Further, we show that, based on how the quantum critical point is approached, there are three regimes that show different temperature and field dependencies which should be experimentally accessible.  相似文献   

20.
We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号