首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We report a study of critical x-ray scattering from SrTiO3 near the antiferrodistortive structural phase transition at T(C) approximately 105 K. A line shape analysis of the thermal diffuse scattering results in the most precise experimental determination to date of the critical exponent gamma. The microscopic mechanism behind the anomalous "central peak" critical scattering component is clarified here by the first-ever observation of a static coherent diffraction pattern (speckle pattern) within the anomalous critical scattering of SrTiO3. This observation allows us to directly attribute the origins of the central peak to Bragg diffraction from remnant static disorder above T(C).  相似文献   

2.
The longitudinal acoustic (LA) mode of bulk GexSe1-x glasses is examined in Brillouin scattering (BS) over the 0.15相似文献   

3.
Using heuristic arguments and numerical simulations it is argued that the critical exponent nu describing the localization length divergence at the integer quantum-Hall transition is modified in the presence of spin-orbit scattering with short-range correlations. The exponent is very close to nu=4/3, the percolation correlation length exponent, consistent with the prediction of a semiclassical argument. In addition, a band of weakly localized states is conjectured.  相似文献   

4.
We characterize the non-Ohmic portion of the conductivity at temperatures T<1 K in the highly correlated transition metal chalcogenide Ni(S,Se)(2). Pressure tuning of the T = 0 metal-insulator transition reveals the influence of the quantum critical point and permits a direct determination of the dynamical critical exponent z = 2.7(+0.3)(-0.4). Within the framework of finite temperature scaling, we find that the spatial correlation length exponent nu and the conductivity exponent &mgr; differ.  相似文献   

5.
The temperature dependence of the order parameter for the smectic A phase of CBOOA is determined by measuring, with elastic coherent neutron scattering, the intensity of the Bragg reflection from the smectic layers. Within the experimental accuracy, the transition smectic A? nematic appears continuous in this system. However, a fit with (Tc-T) yields β = 0.18 ± 0.01. Critical scattering is also observed in both phases. It can be described with an anisotropic Ornstein-Zernike law. The correlation length perpendicular to the smectic layers behaves like (T-Tc)?v, with an exponent v = 0.47 ± 0.06. In contrast, the lateral extension of the layers seems to increase uncritically.  相似文献   

6.
We explore the relationship between the critical temperature T(c), the mobile areal carrier density n(2D), and the zero-temperature magnetic in-plane penetration depth lambda(ab)(0) in very thin underdoped NdBa(2)Cu(3)O(7-delta) films near the superconductor to insulator transition using the electric-field-effect technique. Having established consistency with a Kosterlitz-Thouless transition, we observe that T(KT) depends linearly on n(2D), the signature of a quantum superconductor to insulator transition in two dimensions with znu(over)=1, where z is the dynamic and nu is the critical exponent of the in-plane correlation length.  相似文献   

7.
We present Monte Carlo simulations of a two-dimensional bilayer quantum Heisenberg antiferromagnet with random dimer dilution. In contrast with exotic scaling scenarios found in other random quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed point with power-law scaling. After accounting for corrections to scaling, with a leading irrelevant exponent of omega approximately 0.48, we find universal critical exponents z=1.310(6) and nu=1.16(3). We discuss the consequences of these findings and suggest new experiments.  相似文献   

8.
We report a numerical investigation of the Anderson transition in two-dimensional systems with spin-orbit coupling. An accurate estimate of the critical exponent nu for the divergence of the localization length in this universality class has to our knowledge not been reported in the literature. Here we analyze the SU(2) model. We find that for this model corrections to scaling due to irrelevant scaling variables may be neglected permitting an accurate estimate of the exponent nu=2.73+/-0.02.  相似文献   

9.
We examine the behavior of a model which describes the melting of double-stranded DNA chains. The model, with displacement-dependent stiffness constants and a Morse on-site potential, is analyzed numerically; depending on the stiffness parameter, it is shown to have either (i) a second-order transition with nu( perpendicular) = -beta = 1,nu(||) = gamma/2 = 2 (characteristic of short-range attractive part of the Morse potential) or (ii) a first-order transition with finite melting entropy, discontinuous fraction of bound pairs, divergent correlation lengths, and critical exponents nu( perpendicular) = -beta = 1/2,nu(||) = gamma/2 = 1.  相似文献   

10.
In the archetypal strongly correlated electron superconductor CeCu2Si2 and its Ge-substituted alloys CeCu2(Si1-xGex)2 two quantum phase transitions--one magnetic and one of so far unknown origin-can be crossed as a function of pressure. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (rho) power-law exponent alpha. At the lower critical point (at pcl, 1相似文献   

11.
Using high-resolution x-ray scattering, we have demonstrated the existence of quenched disordered charge stripes in a single crystal of La (5/3)Sr (1/3)NiO (4) at low temperatures. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. The charge stripes are shown to be two dimensional in nature both by measurements of their correlation lengths (xi(a) approximately 185 A, xi(b) = 400 A, and xi(c) approximately 25 A) and by the critical exponents of the charge strip transition. The charge stripe ordering did not develop long-range order even at low temperatures, indicating that the charge stripes are disordered and that the length scale of the disorder is quenched.  相似文献   

12.
The width W of the active region around an active moving wall in a directed percolation process diverges at the percolation threshold p(c) as W approximately Aepsilon(-nu( parallel)) ln(epsilon(0)/epsilon), with epsilon=p(c)-p, epsilon(0) a constant, and nu( parallel)=1.734 the critical exponent of the characteristic time needed to reach the stationary state xi( parallel) approximately epsilon(-nu(parallel)). The logarithmic factor arises from screening the statistically independent needle shaped subclusters in the active region. Numerical data confirm this scaling behavior.  相似文献   

13.
The transverse Meissner effect (TME) in the highly layered superconductor Bi(2)Sr(2)CaCu(2)O(8+y) with columnar defects is investigated by transport measurements. We present evidence for the persistence of the Bose glass phase for H(perpendicular)H(+)(perpendicular c), moving kink chains consistent with a commensurate-incommensurate transition scenario are observed. These results show the existence of the TME for H(perpendicular)相似文献   

14.
A quantum critical point of the heavy fermion Ce(Ru(1-x)Rh(x))2Si2, (x = 0,0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k3 = 0.35c*, we have shown that the inverse energy width gamma(k3), i.e., the inverse correlation time, depends on temperature as gamma(k3) = c1 + c2T((3/2)+/-0.1), where c1 and c2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +/- 0.1 proves that the quantum critical point is controlled by that of the itinerant antiferromagnet.  相似文献   

15.
We show that the spin degree of freedom plays a decisive role in the phase diagram of the nu(T)=1 bilayer electron system using an in-plane field B( parallel) in the regime of negligible tunneling. We observe that the phase boundary separating the quantum Hall and compressible states at d/l(B) = 1.90 for B(parallel) = 0 (d: interlayer distance, l(B): magnetic length) steadily shifts with B(parallel) before saturating at d/l(B) = 2.33 when the compressible state becomes fully polarized. Using a simple model for the energies of the competing phases, we can quantitatively describe our results. A new phase diagram as a function of d/l(B) and the Zeeman energy is established and its implications as to the nature of the phase transition are discussed.  相似文献   

16.
Kwon S  Lee J  Park H 《Physical review letters》2000,85(8):1682-1685
It has been generally believed that hard core interaction is irrelevant to absorbing-type critical phenomena because the particle density is so low near an absorbing phase transition. We study the effect of hard core interaction on the N-species branching annihilating random walks with two offspring and report that hard core interaction drastically changes the absorbing-type critical phenomena in a nontrivial way. Through a Langevin equation-type approach, we predict analytically the values of the scaling exponents, nu( perpendicular) = 2, z = 2, alpha = 1/2, and beta = 2 in one dimension for all N>1. Direct numerical simulations confirm our prediction. When the diffusion coefficients for different species are not identical, nu( perpendicular) and beta vary continuously with the ratios between the coefficients.  相似文献   

17.
We present a study of the magnetic properties of Zr(1-x)NbxZn2, using an Arrott plot analysis of the magnetization. The Curie temperature Tc is suppressed to zero temperature for Nb concentration xc = 0.083+/-0.002, while the spontaneous moment vanishes linearly with Tc as predicted by the Stoner theory. The initial susceptibility chi displays critical behavior for x or= xc we find that chi(-1) = chi0(-1) + aT(4/3), where chi0(-1) vanishes as x-->xc. The resulting magnetic phase diagram shows that the quantum critical behavior extends over the widest range of temperatures for x=xc, and demonstrates how a finite transition temperature ferromagnet is transformed into a paramagnet, via a quantum critical point.  相似文献   

18.
We present experimental data and a theoretical interpretation of the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b ≈ 2-10 nm. A large phase relaxation rate caused by scattering of quasiparticles off spin-wave excitations renders the dephasing length L(?) ? b in the range of sheet resistances considered, so that the effective dimension is d = 3. The conductivity data at different stages of disorder obey a fractional power-law temperature dependence and collapse onto two scaling curves for the metallic and insulating regimes, indicating an asymmetric metal-insulator transition with two distinctly different critical exponents; the best fit is obtained for a dynamical exponent z ≈ 2.5 and a correlation (localization) length critical exponent ν- ≈ 1.4 (ν+ ≈ 0.8) on the metallic (insulating) side.  相似文献   

19.
Geometric parameters of NiO films epitaxially grown on Ag(001) were determined using two independent experimental techniques and ab initio simulations. Primary beam diffraction modulated electron emission experiments determined that the NiO films grow with O on top of Ag and that the oxide/metal interface distance is d=2.3+/-0.1 A. Polarization-dependent x-ray absorption, at the Ni-K edge, determined the tetragonal strain (r( parallel )=2.046+/-0.009 A, r( perpendicular )=2.12+/-0.02 A) and d=2.37+/-0.05 A. Periodic slab model results agree with the experiments (d=2.40, r( parallel )=2.07, r( perpendicular )=2.10 A; the O-on-top configuration is the most stable).  相似文献   

20.
We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture propagation being a damage coalescence process described by a stress-weighted percolation phenomenon in a self-generated quadratic damage gradient. We use the quasistatic 2D fuse model as a paradigm of a mode I fracture model. We measure for this model, which exhibits a correlated percolation process, the correlation length exponent nu approximately 1.35 and conjecture it to be equal to that of classical percolation, 4/3. We then show that the roughness exponent in the 2D fuse model is zeta=2nu/(1+2nu)=8/11. This is in accordance with the numerical value zeta=0.75. Using the value for 3D percolation, nu=0.88, we predict the roughness exponent in the 3D fuse model to be zeta=0.64, in close agreement with the previously published value of 0.62+/-0.05. We furthermore predict zeta=4/5 for 3D brittle fractures, based on a recent calculation giving nu=2. This is in full accordance with the value zeta=0.80 found experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号