首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Reactions and reaction dynamics of gas-phase H(or D) atoms with D(or H) atoms adsorbed onto a Cu(1 1 1) surface have been investigated by the quasi-classical molecular dynamics method. To simulate the H(D) → D(H) + Cu(1 1 1) system at a 94 K surface temperature, D(or H) adsorbates were disseminated arbitrarily on the surface of Cu(1 1 1) to form 0.50, 0.28 and 0.18 ML of coverages. The interaction of hydrogen atoms and the surface system is worked out by an LEPS function. LEPS parameters have been determined by using the total energy values which were calculated by a density functional theory (DFT) method and the generalized gradient approximation (GGA) for the exchange-correlation energy for various configurations of one and two hydrogen atoms on the Cu(1 1 1) surface. The Cu(1 1 1) surface, imitated by an embedded-atom method which is a many-body potential parameterized by Voter-Chen, is formed as a multilayer slab. The slab atoms are permitted to move. Various processes, trapping onto the surface, inelastic reflection of the incident projectile and penetration of the adsorbate or projectile atom into the slab, are examined. The dependence of these mechanisms on isotopic replacement has also been analyzed. Considerable contributions of the hot-atom pathways for the product formations are consequently observed. The rate of subsurface penetrations is obtained to be larger than the sticking rate onto the surface.  相似文献   

2.
Formation of functional groups on graphite during oxygen plasma treatment   总被引:1,自引:0,他引:1  
Improved sample wettability was obtained by oxygen plasma functionalization of pyrolytic graphite. The samples were exposed to highly dissociated oxygen plasma with the density of 1 × 1016 m−3, the electron temperature of about 5.5 eV and the density of neutral oxygen atoms of 8 × 1021 m−3 for 20 s. The surface wettability was measured by a contact angle of water drop. The contact angle dropped from original 112° down to about 1°. The functional groups were detected by XPS analyses. The survey spectrum showed a substantial increase of oxygen concentration on the surface, while high-resolution analyses showed additional oxygen was bonded onto the graphite surface in the form of C-O polar functional group responsible for the increase of the surface energy.  相似文献   

3.
4.
T. ?lusarski 《Surface science》2009,603(8):1150-22997
Adsorption of sulfur at the (1 0 0) surface of gold is analyzed with the help of the density functional theory (DFT). Potential energy surface for a single S atom at the Au(1 0 0) surface is computed and a simple analytical formula was found to reproduce the ab initio results to a good accuracy. Vibration frequencies of the adsorbed S atom are computed using the harmonic approximation and the contribution of zero-point motion to the adsorption energy is evaluated. The effects of surface Au atoms relaxation in the sulfur adsorption is analyzed. The interactions between S atoms adsorbed at the nearest and the next nearest equivalent adsorption sites are computed and used to define the effective Hamiltonian describing the interactions between the adsorbed sulfur atoms.  相似文献   

5.
We study the behavior of a hydrogen atom adsorbed on aluminum nanowire based on density functional theory. In this study, we focus on the electronic structure, potential energy surface (PES), and quantum mechanical effects on hydrogen and deuterium atoms. The activation energy of the diffusion of a hydrogen atom to the axis direction is derived as 0.19 eV from PES calculations. The probability density, which is calculated by including quantum effects, is localized on an aluminum top site in both cases of hydrogen and deuterium atoms of the ground state. In addition, some excited states are distributed between aluminum atoms on the surface of the nanowire. The energy difference between the ground state and these excited states are below 0.1 eV, which is much smaller than the activation energy of PES calculations. Thus using these excited states, hydrogen and deuterium atoms may move to the axial direction easily. We also discuss the electronic structure of the nanowire surface using quantum energy density defined by one of the authors.  相似文献   

6.
The adsorption of oxygen atoms on Mg3Nd (0 0 1) surface was studied based on density function theory (DFT), in which the exchange-correlation potential was chosen as the generalized gradient approximation (GGA) in the Perdew and Wang (PW91). The most preferred adsorption position was at the top-hollow site. Upon the optimization on top-hollow site with different coverage, it was found that the adsorption energy decreased with oxygen coverage. The density of states analysis showed that obvious charge transfer took place between O atom and the nearest Nd atom and chemical bond formed between O atom and the nearest Nd atom after O adsorption. The result of surface energy as a function of chemical potential change of oxygen indicated the clean Mg3Nd (0 0 1) surface was easy to adsorb oxygen and form 1.00 ML surface.  相似文献   

7.
Strain-induced nanopatterns formed by the coadsorption of nitrogen and oxygen atoms are studied on the Cu(0 0 1) surface by scanning tunneling microscopy. A square grid pattern similar to that on the N-adsorbed surface appears, and consists of square c(2 × 2) areas with adsorbed N and O atoms when the total density of the adsorbates is around 30% of the Cu atom density on the clean surface. We evaluated the surface strain using a first-principles calculation for a coadsorbed surface and compared it with those on the clean and N-adsorbed surfaces. The strain on the coadsorbed surface is smaller than that of the N-adsorbed surface. The observed size of the square c(2 × 2) area on the coadsorbed surface is larger than that on the N-adsorbed surface with increasing the density of the adsorbates on average as expected by the strain reduction. On the other hand, there is no significant difference in the period of the grid pattern.  相似文献   

8.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

9.
A. Nojima 《Surface science》2007,601(14):3003-3011
We have used density functional theory to investigate hydrogen adsorption and diffusion on a W(1 1 0) surface. Hydrogen adsorption structures were examined from low coverage to one monolayer, and a threefold hollow site was found to be the most stable site at all coverages. In contrast to previous assertions, the work function decrease is not due to electron transfer from the hydrogen atoms to the W surface, but due to electron depletion at the vacuum region above the hydrogen atoms. Hydrogen atoms can diffuse via short-bridge sites and long-bridge sites at a coverage of θ = 1.0. Although the calculated activation energy for hydrogen diffusion via a short-bridge site is as small as 0.05 eV, field emission microscope experiments have shown that the activation energy for hydrogen diffusion is about 0.20 eV, which agrees fairly well with our calculated value of the activation energy via a long-bridge site. This discrepancy can be related to hydrogen delocalization on the W(1 1 0) surface, which has been suggested by electron energy loss spectroscopy experiments.  相似文献   

10.
Aluminum trioxide ceramic coatings with high hardness were grown on surfaces of 2024 Aluminum alloys by micro-plasma oxidation in an aluminate electrolytic solution, which highly improve wear-resisting properties of 2024 Aluminum alloys. However, ceramic coating surfaces are porous and very coarse, which is disadvantageous to practical applications. In this paper, in order to increase the density of the pores and decrease the friction coefficient of the ceramic coatings, different concentrations (2-8 g/l) of graphite were added into the aluminate electrolytic solution. The thickness and hardness of the produced ceramic coatings were measured by HVS-100 micro-hardness tester and thickness tester. The friction coefficient of the coatings was studied by a frictionometer. The phase composition and surface morphology of the MPO films were evaluated through X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the thickness of the ceramic coating is about 22 ± 1 μm, surfaces of the ceramic coatings are very uniform and that the coatings consist of mainly aluminum trioxides and a certain amount of graphite, which indicates graphite have entered the ceramic films during the micro-plasma oxidation process. Wear properties results show that the friction coefficient of the ceramic coatings decreased when graphite entered the ceramic films. When the concentration of graphite is 4 g/l, the wear properties of the coatings is the most excellent and the friction coefficient decreases to the lowest, that is 0.09.  相似文献   

11.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

12.
M. Lindenblatt 《Surface science》2006,600(18):3624-3628
Time-dependent density functional theory for the electronic degrees of freedom has been combined with Ehrenfest dynamics for the nuclei to simulate electron-hole pair excitation due to electronic friction during the chemisorption of hydrogen atoms on an Al(1 1 1) surface. The H-atoms are assumed to be spin-unpolarized in the simulations. Trajectories starting with a hydrogen atom at rest above either the on-top or the fcc-hollow site evolve in qualitatively very different ways: at the fcc-hollow position the H-atom acquires sufficient kinetic energy in the chemisorption well to penetrate into the Al-substrate, thereby increasing the coupling of the motion of the H-atom to the substrate electrons. The electronic excitation spectra, however, are roughly characterized by an exponential decay with similar fictitious temperature parameters of the order of 103 K for both kinds of trajectories. The energy dissipation into electron-hole pairs and the nonadiabatic contribution to the force acting on the hydrogen atom have been calculated along the trajectories.  相似文献   

13.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

14.
The sticking of hydrogen atoms with kinetic energies in the range 0.003-10 eV on a clean (0 0 1) tungsten surface has been investigated using molecular dynamics simulations. The atoms are found to stick to the surface at 0 and 300 K, with a sticking coefficient smaller than 0.6 for kinetic energies higher than 3 meV. The adsorption sites for H on the W(0 0 1) surface are also presented. The dominant site is in perfect agreement with the experimentally found bridge site.  相似文献   

15.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

16.
The surface stress on clean TiO2 (1 1 0) and (1 0 0) surfaces, and those with four types of adsorbent - (i) molecularly adsorbed water, (ii) dissociatively adsorbed water, (iii) dissociatively adsorbed water at an oxygen vacancy, and (iv) adsorbed hydrogen - was investigated in the framework of density functional theory using a slab model. The calculations were intended to rationalize the effect of the artificially introduced stress that occurs in experimentally photoinduced hydrophilicity. Tensile stress was observed for a clean (1 1 0) surface, and a mixture of tensile and compressive stress for a clean (1 0 0) surface. The adsorbate-induced surface stresses were analyzed in terms of the sixfold coordinated character of the surface titanium atoms, hydrogen bonds between the adsorbents and the bridging oxygen atoms, and the change in electron density in the vicinity of the surface.  相似文献   

17.
The atomic configurations, bonding characteristics, and electronic structures of the N-adsorbed (directly and substitutionally) SrTiO3(0 0 1) surface are studied by using first-principles method based on the density functional theory. From the analysis of the energetics and density of states, it is found that the stability of the directly adsorbed N depends on the relative position of N atom to the surface. To better understand the effects of the substitutionally adsorbed N on the surface, as an example, the behavior of Au atoms adsorbed on the N-substituted surface is discussed in detail. There is clearly a synergy effect between the substitution of N for Os(I) and the adsorption of Au atoms on the SrTiO3(0 0 1) surface.  相似文献   

18.
N. Ozawa 《Surface science》2006,600(18):3550-3554
We investigate the quantum mechanical behavior of adsorbed hydrogen (H, D, T) on Cu(1 0 0) and (1 1 0) surfaces. We construct potential energy surfaces (PESs) for the motion of the hydrogen H atom on Cu(1 0 0) and (1 1 0) surfaces within the framework of density functional theory. The potential energy takes a minimum value on the hollow site of Cu(1 0 0) and on the short bridge site of Cu(1 1 0). Moreover, we calculate the quantum states of hydrogen atom motion on these calculated PESs. The ground state wave function of the hydrogen atom motion is strongly localized around the hollow site on the Cu(1 0 0) surface. On the other hand, the ground state wave function of the hydrogen atom motion on Cu(1 1 0) is distributed from the short bridge site to two neighboring pseudo-threefold sites. We finally show isotope effects on the quantum states of the motion of hydrogen on both surfaces.  相似文献   

19.
CO-H interaction and H bulk dissolution on Pd(1 1 1) were studied by sum frequency generation (SFG) vibrational spectroscopy and density functional theory (DFT). The theoretical findings are particularly important to rationalize the experimentally observed mutual site blocking of CO and H and the effect of H dissolution on coadsorbate structures. Dissociative hydrogen adsorption on CO-precovered Pd(1 1 1) is impeded due to an activation barrier of ∼2.5 eV for a CO coverage of 0.75 ML, an effect which is maintained down to 0.33 ML CO. Preadsorbed hydrogen prevented CO adsorption at 100 K, while hydrogen was replaced from the surface by CO above 125 K. The temperature-dependent site blocking of hydrogen originates from the onset of hydrogen diffusion into the Pd bulk around 125 K, as shown by SFG and theoretical calculations using various approaches. When Pd(1 1 1) was exposed to 1:1 CO/H2 mixtures at 100 K, on-top CO was absent in the SFG spectra although hydrogen occupies only threefold hollow sites on Pd(1 1 1). DFT attributes the absence of on-top CO to H atoms diffusing between hollow sites via bridge sites, thereby destabilizing neighboring on-top CO molecules. According to the calculations, the stretching frequency of bridge-bonded CO with a neighboring bridge-bonded hydrogen atom is redshifted by 16 cm−1 when compared to bridging CO on the clean surface. Implications of the observed effects on hydrogenation reactions are discussed and compared to the C2H4-H coadsorption system.  相似文献   

20.
Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号