首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磷掺杂纳米硅薄膜的研制   总被引:8,自引:0,他引:8       下载免费PDF全文
用PECVD薄膜沉积方法,成功地制备了磷掺杂纳米硅(nc-Si:H(P))薄膜.用扫描隧道电镜(STM)、Raman散射、傅里叶变换红外吸收(FTIR)谱、电子自旋共振(ESR)、共振核反应(RNR)技术对掺磷纳米硅进行了结构分析,确认了样品的微结构为纳米相结构.掺磷后膜中纳米晶粒的平均尺寸d减小,一般在25—45nm之间,且排列更加有序.掺磷nc-Si:H膜具有较高的光吸收系数,光学带隙在173—178eV之间,和本征nc-Si:H相同.掺杂nc-Si:H薄膜电导率在10-1关键词:  相似文献   

2.
Low-temperature synthesis of highly transparent conducting B-doped (p-type) nc-SiOX:H films has been pursued by 13.56 MHz plasma-CVD, using a combination of SiH4, CO2 and B2H6, diluted by H2 and He. Higher substrate temperature (TS) encourages nanocrystallization in B-doped nc-SiOX:H network by reducing bonded H-content, while bonded O-content also reduces simultaneously. At optimized TS = 150 °C, p–nc-SiOX:H film having an optical band gap ~1.98 eV, high conductivity ~0.18 S cm−1, has been obtained via dopant-induced escalation of the electrically active carriers at a deposition rate ~5.3 nm/min. The p–nc-SiOX:H film appears as a promising window layer for the top sub-cell of multi-junction silicon solar cells. A single-junction nc-Si:H based p-i-n solar cell of efficiency (η) ~7.14% with a current-density (JSC) ~14.18 mA/cm2, reasonable fill-factor (FF) ~66.2% and open-circuit voltage (VOC) ~0.7606 V has been fabricated, using the optimum p-type nc-SiOX:H as the window layer deposited at TS = 150 °C.  相似文献   

3.
In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 × 1017 cm−3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.  相似文献   

4.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were fabricated by plasma enhanced chemical vapor deposition under the various negative substrate bias voltages with hydrogen as a diluent of silane. The microstructure and optical properties of nc-Si:H thin films were studied by Raman scattering spectroscopy, X-ray diffraction (XRD), transmission electron microscopy, and optical transmission spectroscopy. Raman spectra and XRD pattern reveal that applying negative bias voltages at the moderate level favors the enhancement of crystalline volume fraction, increase of crystallite sizes and decrease of residual stress. We also demonstrated that the negative direct current bias can be used to modulate the volume fraction of voids, refractive index, absorption coefficient, compactness and ordered degree of nc-Si:H films. It is found that the film deposited at −80 V shows not only high crystallinity, size of crystallite, and static index n0 but also low residual stress and volume fraction of voids. Furthermore, the microstructural evolution mechanism of nc-Si:H thin films prepared at different bias voltages is tentatively explored.  相似文献   

5.
In this paper we report detail investigation and correlation between micro-structural and optical properties of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure. The influence of the microstructure of the nc-Si thin films on their optical properties was investigated through an extensive characterization. The effect of anodisation currents on the microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM) and transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). The optical constants (n and k as a function of wavelength) of the films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The silicon layer (SL) was modeled as a mixture of void, crystalline silicon and aluminum using the Bruggeman approximation. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties. A very bright photoluminescence (PL) was obtained and find to depend on anodisation current.  相似文献   

6.
The application of the striking electrical and optical properties of amorphous and nano-crystalline silicon in photovoltaic, photonic and nano-electronic devices is attracting increasing attention. In particular, its use both on polymeric substrates and in Integrated Circuit technology for the development of enhanced new devices has shown that processing techniques to produce amorphous hydrogenated and nano-crystalline silicon films avoiding high substrate temperatures are of great importance. A promising strategy to achieve this purpose is the combination of Hot-Wire Chemical Vapor Deposition at 150 °C with Excimer Laser Annealing, thus maintaining the substrate at relatively low temperature during the complete process.In this work we present a numerical analysis of Excimer Laser Annealing, performed at room temperature, of a multilayer structure of thin alternating a-Si:H and nc-Si films deposited on glass and grown by Hot-Wire Chemical Vapor Deposition. A set of two different layer thicknesses a-Si:H (25 nm)/nc-Si (100 nm) and a-Si:H (30 nm)/nc-Si (60 nm) were analysed for a total structure dimension of 900 nm. The aim is to determine the probable temperature profile to achieve controlled localized in depth dehydrogenation.Temperature distribution has been calculated inside the multilayer during the irradiation by a 193 nm Excimer laser, 20 ns pulse length, with energy densities ranging from 50 to 300 mJ/cm2. Calculations allowed us to estimate the dehydrogenation effect in the different layers as well as the structural modifications of the same layers as a function of the applied laser energy.The numerical results have been compared to the experimental ones obtained in similar multilayer structures that have been analysed through Raman spectroscopy and TOF-SIMS in depth profiling mode.  相似文献   

7.
The hydrogenated nanocrystalline silicon (nc-Si:H) thin films were produced by capacitively-coupled plasma enhanced chemical vapor deposition (PECVD) technique at low substrate temperatures (Ts ≈ 40–200 °C). Firstly, for particular growth parameters, the lowest stable Ts was determined to avoid temperature fluctuations during the film deposition. The influence of the Ts on the structural and optical properties of the films was investigated by the Fourier transform infrared (FTIR), UV–visible transmittance/reflectance and X-ray diffraction (XRD) spectroscopies. Also, the films deposited at the center of the PECVD electrode and those around the edge of the PECVD electrode were compared within each deposition cycle. The XRD and UV–visible reflectance analyses reveal the nanocrystalline phase for the films grown at the edge at all Ts and for the center films only at 200 °C. The crystallinity fraction and lateral dark conductivity decrease with lowered Ts. FTIR analyses were used to track the hydrogen content, void fraction and amorphous matrix volume fraction within the films. The optical constants obtained from the UV–visible transmittance spectroscopy were correlated well with the FTIR results. Finally, the optimal Ts was concluded for the application of the produced nc-Si:H in silicon-based thin film devices on plastic substrates.  相似文献   

8.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited using HW-CVD technique at various deposition pressures. Characterisation of these films from Raman spectroscopy revealed that nc-Si:H thin films consist of a mixture of two phases, crystalline phase and amorphous phase containing small Si crystals embedded therein. We observed increase in crystallinity in the films with increase in deposition pressure whereas the size of Si nanocrystals was found ∼2 nm over the entire range of deposition pressure studied. The FTIR spectroscopic analysis showed that with increasing deposition pressure the predominant hydrogen bonding in the films shifts from, Si-H to Si-H2 and (Si-H2)n complexes and the hydrogen content in the films was found in the range 6.2-9.3 at% over the entire range of deposition pressure studied. The photo and dark conductivities results also indicate that the films deposited with increasing deposition pressure get structurally modified. It has been found that the optical energy gap range was between 1.72 and 2.1 eV with static refractive index between 2.85 and 3.24. From the present study it has been concluded that the deposition pressure is a key process parameter to induce the crystallinity in the Si:H thin films using HW-CVD.  相似文献   

9.
New kinds of organic-inorganic hybrid materials consisting of lanthanide (Er3+, Eu3+, and Tb3+) complexes covalently bonded to a silica-based network have been obtained by a sol-gel approach. A new versatile compound containing terpyridine has been synthesized by 4′-p-aminophenyl-2,2′:6′,2″-terpyridine and 3-(triethoxysilyl)propyl isocyanate, which is used as the a ligand of lanthanide ions and also the siloxane network precursor. The obtained hybrid materials were characterized by FT-IR, TGA, DSC, near-infrared, and visible spectrofluorometer, as well as decay analysis. For the Hybrid-Er and Hybrid-Eu, excitation at the ligand absorption wavelength resulted in the typical near-IR luminescence (centered at around 1.54 μm) resulting from the 4I13/2-4I15/2 transition of Er3+ ions and strong visible region emission of the Eu3+ ions (5D0-7FJ), which contributed to the efficient energy transfer from the ligands to the lanthanide ions. However, we have not found strong emission for the Hybrid-Tb. This indicated that the energy transfer did not take place in this system. A model of indirect excitation mechanism to explain the phenomenon was also suggested.  相似文献   

10.
Surface plasmon resonance (SPR) can be used to detect the change in reflective index on a metal surface. In this report, we propose detection of the SPR can easily be applied to estimate the thickness of the amorphous carbon (a-C:H) films. To detect changes in film thickness using SPR, devices with an a-C:H/Au structure were fabricated. The a-C:H films were deposited by electron cyclotron resonance plasma chemical vapor deposition (ECR-CVD) and sputtering, and the obtained film densities were 1.4 and 1.6 g/cm3, respectively. By the deposition of an 11-nm thick a-C:H film on a Au layer by sputtering, the SPR angle changed from 44.90° to 47.05°. For a-C:H deposited by ECR-CVD, the SPR angle was shifted from 44.24° for Au without the a-C:H layer to 58.44° after deposition of 45 nm thick a-C:H film. In both systems of the SPR angle increased with increasing the film thickness. The rate at which the SPR angle shifted depended on the a-C:H film density. These results show that the thickness of an a-C:H film can be determined by the SPR angle shift on an a-C:H layer using a-C:H/Au device with an a-C:H film of the same density.  相似文献   

11.
The paper presents the comparison of emission efficiencies for crystalline Si quantum dots (QDs) and amorphous Si nanoclusters (QDs) embedded in hydrogenated amorphous (a-Si:H) films grown by the hot wire-CVD method (HW-CVD) at the variation of technological parameters. The correlations between the intensities of different PL bands and the volumes of Si nanocrystals (nc-Si:H) and/or an amorphous (a-Si:H) phase have been revealed using X-ray diffraction (XRD) and photoluminescence (PL) methods. These correlations permit to discuss the PL mechanisms in a-Si:H films with embedded nc-Si QDs. The QD parameters of nc-Si:H and a-Si:H QDs have been estimated from PL results and have been compared (for nc-Si QDs) with the parameters obtained by the XRD method. Using PL and XRD results the relations between quantum emission efficiencies for crystalline (ηcr) and amorphous (ηam) QDs have been estimated and discussed for all studied QD samples. It is revealed that a-Si:H films prepared by HW-CVD with the variation of wire temperatures are characterized by better passivation of nonradiative recombination centers in comparison with the films prepared at the variation of substrate temperatures or oxygen flows.  相似文献   

12.
Hydrogenated nanocrystalline silicon germanium thin films (nc-SiGe:H) is an interesting alternative material to replace hydrogenated nanocrystalline silicon (nc-Si:H) as the narrow bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc-Si) triple-junction solar cell due to its higher optical absorption in the wavelength range of interest. In this paper, we present results of optical, structural investigations and electrical characterization of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HW-CVD) with a coil-shaped tungsten filament and with a disilane/germane/hydrogen gas mixture. The optical band gaps of a-SiGe:H and nc-SiGe:H thin-films, which are deposited with the same disilane/germane/hydrogen gas mixture ratio of 3.4 : 1.7 : 7, are about 1.58 eV and 2.1 eV, respectively. The nc-SiGe:H thin film exhibits a larger optical absorption coefficient of about 2–4 in the 600–900 nm range when compared to nc-Si:H thin film. Therefore, a thinner nc-SiGe:H layer of ∼500 nm thickness may be sufficient for the narrow bandgap absorber in an a-Si based multiple-junction solar cell. We enhanced the transport properties as measured by the photoconductivity frequency mixing technique. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by smallangle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.   相似文献   

13.
(n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭英才  徐刚毅  何宇亮  刘明  李月霞 《物理学报》2000,49(12):2466-2471
采用常规等离子体增强化学气相沉积工艺,以高H2稀释的SiH4作为反应气体源和PH3作为磷原子的掺杂剂,在p型(100)单晶硅((p)c-Si)衬底上, 成功地生长了施主掺杂型纳米硅膜((n)nc-Si:H),进而制备了(n)nc-Si:H/(p)c-Si异质结,并在230—420K温度范围内实验研究了该异质结的I-V特性.结果表明,(n)nc-Si:H/(p)c- Si异质结为一典型的突变异质结构,具有良好的温度稳定性和整流特性.正向偏压下 关键词: (n)nc-Si:H/(p)c-Si异质结 能带模型 电流输运机构 温度特性  相似文献   

14.
A series of nc-Si:H films with different crystalline volume fractions have been deposited by very high frequency glow discharge in a plasma with a silane concentration [SiH4]/([SiH4] + [H2]) varying from 2% to 10%. The nc-Si:H films have been characterized by Raman spectroscopy, XRD diffraction, and UV-vis-near infrared spectrophotometer. The deposition rate increases nearly linear with increasing the silane concentration while the crystalline volume fraction decrease from 58% to 12%. The refractive index and the absorption of the samples were obtained through a modified four-layer-medium transmission model based on the envelope method. It was found that the refractive indices and absorption coefficient increase with increasing silane concentration. Compared to the films deposited using conventional RF-PECVD with excitation frequency of 13.56 MHz, the samples prepared by very high frequency glow discharge have higher absorption coefficients, which is due to its better compactness and lower defect density.  相似文献   

15.
Efficient white electroluminescence has been obtained by using an electroluminescent layer comprising of a blue fluorescent bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(hpb)2] doped with red phosphorescent bis (2-(2′-benzothienyl) pyridinato-N,C3′)iridium(acetylacetonate) [Ir(btp)2acac] molecules. The color coordinates of the white emission spectrum was controlled by optimizing the concentration of red dopant in the blue fluorescent emissive layer. Organic light-emitting diodes were fabricated in the configuration ITO/α-NPD/Zn(hpb)2:0.01 wt%Ir(btp)2acac/BCP/Alq3/LiF/Al. The J-V-L characteristic of the device shows a turn on voltage of 5 V. The electroluminescence (EL) spectra of the device cover a wide range of visible region of the electromagnetic spectrum with three peaks around 450, 485 and 610 nm. A maximum white luminance of 3500 cd/m2 with CIE coordinates of (x, y=0.34, 0.27) at 15 V has been achieved. The maximum current efficiency and power efficiency of the device was 5.2 cd/A and 1.43 lm/W respectively at 11.5 V.  相似文献   

16.
A new tunnel recombination junction is fabricated for n–i–p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p + recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n–i–p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 ·cm 2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage V oc = 1.4 V, which is nearly the sum of the V oc s of the two corresponding single cells, indicating no V oc losses at the tunnel recombination junction.  相似文献   

17.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

18.
Intrinsic, P- and B-doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The microstructures, optical and electronic properties have been evaluated for the undoped and doped nanocrystalline films. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron and phosphorous in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the activation of dopant by annealing increased the room temperature dark conductivity from 3.4 × 10−4 S cm−1 to 5.3 S cm−1 for the P-doped films and from 1.28 × 10−3 S cm−1 to 130 S cm−1 for the B-doped films. Meanwhile, the corresponding value of conductivity activation energies was decreased from 0.29 eV to 0.03 eV for the P-doped films and from 0.3 eV to 5.6 × 10−5 eV for the B-doped films, which indicated the doped nc-Si films with high conductivity can be achieved with the present approach.  相似文献   

19.
Photoelectrical properties of ZnO films doped with Li acceptor impurity and prepared by the electron-beam evaporation method were investigated. The obtained films possess a p-type conductivity. Using p-ZnO:Li and n-ZnO:Ga films, the p-n-junctions were prepared and their photoelectrical properties were studied. The mechanism of charge carrier transport in these films and the influence of annealing on the type and mechanism of conductivity were investigated.  相似文献   

20.
Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号