共查询到20条相似文献,搜索用时 10 毫秒
1.
Hai Wang Jun HuangChao Wang Dapeng LiLiyun Ding Yun Han 《Applied Surface Science》2011,257(13):5739-5745
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively. 相似文献
2.
B. Bittova J. Poltierova VejpravovaM.P. Morales A.G. Roca A. Mantlikova 《Journal of magnetism and magnetic materials》2012,324(6):1182-1188
Collective magnetic behavior of CoFe2O4 nanoparticles with diameters of 76, 16, 15 and 8 nm, respectively, prepared by different chemical methods has been investigated. Particle composition, size and structure have been characterized by inductive coupled plasma (ICP), transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). Basic magnetic properties have been determined from the temperature dependence of magnetization and magnetization isotherms measurements. The three samples exhibit characteristic of a superparamagnetic system with the presence of strong interparticle interactions. Magnetic relaxation phenomena have been examined via frequency-dependent ac susceptibility measurements and aging and memory effect experiments. For the particles coated with oleic acid, it has been demonstrated that the sample reveals all attributes of a super-spin glass (SSG) system with strong interparticle interactions. 相似文献
3.
4.
The spinel CoFe2O4 has been synthesized by combustion reaction technique. X-ray photoelectron spectroscopy shows that samples are near-stoichiometric, and that the specimen surface both in the powder and bulk sample is most typically represented by the formula (Co0.4Fe0.6)[Co0.6Fe1.4]O4, where cations in parentheses occupy tetrahedral sites and those within square brackets in octahedral sites. The results demonstrate that most of the iron ions are trivalent, but some Fe2+ may be present in the powder sample. The Co 2p3/2 peak in powder sample composed three peaks with relative intensity of 45%, 40% and 15%, attributes to Co2+ in octahedral sites, tetrahedral sites and Co3+ in octahedral sites. The O 1s spectrum of the bulk sample is composed of two peaks: the main lattice peak at 529.90 eV, and a component at 531.53 eV, which is believed to be intrinsic to the sample surface. However, the vanishing of the O 1s shoulder peak of the powder specimen shows significant signs of decomposition. 相似文献
5.
Chunlong FeiYue Zhang Zhi YangYong Liu Rui Xiong Jing Shi Xuefeng Ruan 《Journal of magnetism and magnetic materials》2011,323(13):1811-1816
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties. 相似文献
6.
L.J. Zhao 《Journal of magnetism and magnetic materials》2010,322(17):2485-2487
Nanocrystalline CoFe2O4 ferrite with crystallite sizes of 30 nm have been successfully prepared by an emulsion method. X-ray diffractometer (XRD) shows that nanocrystalline CoFe2O4 ferrite possesses face center cubic structure. Crystal structure of the CoFe2O4 nanocrystals will not be changed by the applied magnetic field and pressures. The obtained CoFe2O4 nanocrystalline powders were pressed into thin columns with different pressures. Meanwhile, the dependences of the applied pressures and the direction of applied magnetic field on the magnetic properties of the CoFe2O4 nanocrystals were investigated in detail using vibrating sample magnetometer (VSM). The pressed CoFe2O4 nanocrystal gains the most excellent magnetisms in a parallel applied magnetic field. 相似文献
7.
Guoxin Zhang 《Journal of magnetism and magnetic materials》2009,321(10):1424-1427
Multi-functional magnetic, photoluminescent and photocatalytic CoFe2O4-ZnO nanocomposites were successfully synthesized by a collosol method. The average diameter of the prepared CoFe2O4-ZnO nanocomposites was 30±5 nm, and a diffusion layer was formed to link CoFe2O4 and ZnO. The saturation magnetization of the CoFe2O4-ZnO nanocomposites was 8.99 emu/g. Generation of ZnO from Zn(OH)2 collosol was nearly complete after thermal decomposition at about 380 °C. A photoluminescence emission peak was observed at 443 nm when excitated at 350 nm. Degradation of methyl orange is performed by CoFe2O4-ZnO nanocomposites under ultraviolet radiation, with a degradation rate of up to 93.9%. 相似文献
8.
Ryan Comes Man GuMikhail Khokhlov Jiwei LuStuart A. Wolf 《Journal of magnetism and magnetic materials》2012,324(4):524-527
CoFe2O4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface. 相似文献
9.
用超声水解方法制备MgO纳米颗粒,用化学沉淀法制备α-Fe2O3纳米颗粒,将MgO/α-Fe2O3混合体常温下超声活化2h,400℃固相合成制备出MgFe2O4纳米颗粒.通过X射线衍射和透射电子显微镜测试产品的化学成分、晶体结构和形貌尺寸,分析声化学反应机理及其影响因素.研究结果表明:所制备的MgFe2O4为尖晶石铁氧体,颗粒尺寸分布在20-30nm之间,粒度分布均匀;超声空化效应提高了化学反应活性、增加反应物的比表面积和反应物之间的接触面积,促进固相合成反应速度,降低反应温度,实现了一般条件下难以完成的化学反应. 相似文献
10.
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2. 相似文献
11.
Youyi Sun Guizheng GuoBinhua Yang Wei CaiYe Tian Minghong HeYaqing Liu 《Physica B: Condensed Matter》2011,406(4):1013-1016
A new synthesis method of α-Fe2O3 nanoparticles was developed, in which the ferrous and ferric salts as well as polyaniline acted as the precursor and dispersant, respectively. From the investigation of X-ray diffraction and FT-IR spectra, the α-Fe2O3 nanoparticles can be directly prepared by the co-precipitation method without high-temperature calcining. Transmission electron microscope (TEM) and scanning electron microscope (SEM) observation revealed that the α-Fe2O3 nanoparticles had average diameters ranging from 30.0 to 75.0 nm. Compared with previous methods, this present method shows an easy processing and can be applied on the large-scale produce of α-Fe2O3 nanoparticles in one step. 相似文献
12.
In this paper we report structural and magnetic properties of Fe3O4 nanoparticles synthesized by thermal decomposition of ball milled iron nitrate and citric acid in N2 and air ambient. The XRD pattern of samples which are prepared in air shows some impurity phases, while the samples synthesized in the N2 atmosphere are almost pure Fe3O4 phase. The result shows that by increasing the particle size, the magnetization of the samples increases. The increase of magnetization by increasing the particle size could be attributed to the lower surface spin canting and surface spin disorder of the larger magnetic nanoparticles. The results of ac magnetic susceptibility measurements show that the susceptibility data are not in accordance with the Néel -Brown model for superparamagnetic relaxation, but fit well with conventional critical slowing down model which indicates that the dipole-dipole interactions are strong enough to cause superspin-glass like phase in these samples. 相似文献
13.
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine antireflection coatings on 4H-SiC-based UV optoelectronic devices. 相似文献
14.
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs. 相似文献
15.
Qingliang Shi Jianping XuYouwei Wang Xueliang WangYuan Hong Lifang JiangLan Li 《Physics letters. A》2014
An electrical bistable device was fabricated by using SiO2 modified-ZnO nanoparticles (NPs) embedded in poly-vinyl-phenol (PVP) polymer as the charge storage medium. Compared to the reference devices with PVP or ZnO NPs embedded in PVP, the proposed device showed improved reproducible electrical bistability. The time maintenance for On/Off states reached 104 s, revealing the better environmental stability. The carrier transport mechanism was interpreted by the space-charge-limited-current (SCLC), thermionic emission (TE) and ohmic conduction models. The charge trapping and de-trapping process of ZnO NPs were described based on the energy-band diagram of the device. 相似文献
16.
Wensheng Lu Anjian Xie Weiqiang Zhang 《Journal of magnetism and magnetic materials》2010,322(13):1828-888
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials. 相似文献
17.
The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained. 相似文献
18.
Microstructural properties of liquid and amorphous SiO2 nanoparticles have been investigated via molecular dynamics (MD) simulations with the interatomic potentials that have weak Coulomb interaction and Morse-type short-range interaction under non-periodic boundary conditions. Structural properties of spherical nanoparticles with different sizes of 2, 4 and 6 nm obtained at 3500 K have been studied through partial radial distribution functions (PRDFs), coordination number and bond-angle distributions, and compared with those observed in the bulk. The core and surface structures of liquid SiO2 nanoparticles have been studied in detail. We found significant size effects on structure of nanoparticles. Calculations also show that if the size is larger than 4 nm, liquid SiO2 nanoparticles at the temperature of 3500 K have a lightly distorted tetrahedral network structure with the mean coordination number ZSi-O≈4.0 and ZO-Si≈2.0 like those observed in the bulk. Moreover, temperature dependence of structural defects and SiOx stoichiometry in nanoparticles on cooling from the melt has been found and presented. 相似文献
19.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g. 相似文献
20.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect. 相似文献