首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Effects of the Hf content in Co-Hf-Ta thin films on the microstructure and magnetic properties were investigated in this study. It was found that appropriate Hf addition can effectively refine the Co grain size. Co grain sizes sharply decreased from 50 nm down to 2.3 nm with increasing the Hf content from 1.02 at.% to 2.81 at.%, leading to the reduced magneto-crystalline anisotropy. The Co-Hf-Ta thin films with small Co grains reveal low anisotropy field, low coercivity, and high resistivity. By optimizing the Hf content, the film with Hf concentration of 2.81 at.% exhibits excellent soft magnetic properties: high saturation magnetization (4πMS ∼ 13.6 kG), and low coercivity (HC ∼ 0.6 Oe). The effective permeability of the film reaches 800 and remains constant up to 1 GHz.  相似文献   

2.
In the communications industry, miniaturization is a requirement for inductor devices. To miniaturize power inductors, high inductance is necessary. To this end, high-permeability FeHfN magnetic films are used to enhance the inductance of power inductors. These nanocrystalline FeHfN soft magnetic films, each roughly 700 nm thick, were deposited onto Si substrates using nitrogen reactive sputtering. In this study, planar sandwiched power inductors containing FeHfN films have a higher inductance than air-core power inductors. Inductance (L) of high-permeability FeHfN films is enhanced significantly by roughly 13% compared with that of air-core inductors at 5 MHz. Integrating power inductors with FeHfN films may increase extra parasitic capacitance. Moreover, the increased eddy current loss is created by the low resistivity of FeHfN films. Therefore, the quality factor (Q) of sandwiched power inductors decreases at 5 MHz. Conversely, saturation current (Isat) of these planar sandwiched power inductors exceeds 2 A. Such planar power inductors with the high-permeability FeHfN films are a promising candidate for applications in DC-DC converters.  相似文献   

3.
Nanogranular CoFeZrO thin films were successfully prepared by radio frequency reactive magnetron sputtering in O2/Ar atmosphere. The magnetic properties and microstructure were investigated. It is found that the Co17.08Fe49.76Zr16.24O16.91 films show the best soft magnetic properties: magnetic coercivity of 0.3 Oe; anisotropy field of 44.9 Oe; saturation magnetization of 16.8 kG; electrical resistivity of 462.8 μΩ cm. The effective permeability of the films reaches 800 and flattens up to 2 GHz.  相似文献   

4.
High saturation magnetization soft magnetic FeCo (=Fe65Co35) films were prepared using a thin Co underlayer. The FeCo/Co films exhibited a well-defined in-plane uniaxial anisotropy with easy axis coercivity (Hce) of 10 Oe and hard axis coercivity (Hch) of 3 Oe, and a half reduction of Hc with Hce=4.8 Oe and Hch=1.0 Oe was obtained when the composition was adjusted to 25 at% Co. The effective permeability of the films remains flat around 250 to 800 MHz. The saturation magnetostriction was 5.2×10−5 and the intrinsic stress was 0.8 GPa in FeCo single layer, both were slightly reduced by Co underlayer. The Co underlayer changed the preferred orientation of the FeCo films from (2 0 0) to (1 1 0) but more significantly, reduced the average grain size from ∼74 to ∼8.2 nm. It also reduced the surface roughness from 2.351 to 0.751 nm. The initial stage and interface diffusion properties were examined by TEM and XPS.  相似文献   

5.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

6.
Microstructure, static magnetic properties and microwave permeability of sputtered FeCo films were examined. Fe60Co40 films (100 nm in thickness) deposited on glass substrates exhibited in-plane isotropy and a large coercivity of 161.1 Oe. When same thickness films were deposited on 2.5 nm Co underlayer, well-defined in-plane anisotropy was formed with an anisotropy field of 65 Oe. The sample had a static initial permeability of about 285, maximum imaginary permeability of 1255 and ferromagnetic resonance frequency of 2.71 GHz. Cross-sectional TEM image revealed that the Co underlayer had induced a columnar grain structure with grain diameter of 10 nm in the FeCo films. In comparison, FeCo films without Co underlayer showed larger grains of 70 nm in diameter with fewer distinct vertical grain boundaries. In addition, the Co underlayer changed the preferred orientation of the FeCo from (1 0 0) to (1 1 0). The improvement in soft magnetic properties and microwave behavior originates from the modification of the film microstructure, which can be well understood by the random anisotropy theory.  相似文献   

7.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

8.
Bilayered Fe65Co35 (=FeCo)/Co films were prepared by facing targets sputtering with 4πMs∼24 kg. The soft magnetic properties of FeCo films were induced by a Co underlayer. Hc decreased rapidly when the Co underlayer was 2 nm or more. The films showed well-defined in-plane uniaxial anisotropy with the typical values of Hce=10 Oe and Hch=3 Oe, respectively. High frequency characteristics of the films show the films can work at 0.8 GHz with real permeability as high as 250.  相似文献   

9.
A series of (Fe65Co35±2)x-(SiO1.7±0.2)1−x nano-granular films with various metal volume fractions (x) were fabricated by rf sputtering. In a wide range, excellent soft magnetic properties have been achieved. In the x range from 0.7 to 0.48, the films exhibit small coercivity Hc not exceeding 4 Oe and high electrical resistivity ρ up to 1.15 × 104 μΩ cm. And a minimum Hc value of 1.65 Oe was obtained for the sample of x = 0.57 with ρ = 2.86 × 103 μΩ cm. At a frequency lower than 2.0 GHz, the real part μ′ of complex permeability of this sample is more than 170 and the FMR frequency is as high as 2.6 GHz, implying a high cut-off frequency for high frequency applications. With decreasing Fe65Co35±2 volume fraction, the resistivity of films increases remarkably and the grain size decreases obviously. At the same time, the coercivity Hc decreases with grain size decreasing, which is consistent with the conclusion resulted from random anisotropy model quoted by Herzer. Study on Henkel plots shows that intergranular ferromagnetic exchange coupling exists among grains and is important for realizing soft magnetic properties.  相似文献   

10.
High-frequency characteristics of CoFeVAlONb thin films were studied. A thin film of Co43.47Fe35.30V1.54Al5.55O9.93Nb4.21 is observed to exhibit excellent magnetic properties; magnetic coercivity of 1.24 Oe, uniaxial in-plane anisotropy field of 66.99 Oe, and saturation magnetization of 19.8 kG. The effective permeability of the film is as high as 1089 and is stable up to 1.8 GHz, and with ferromagnetic resonance over 3 GHz. This film also has very high electrical resistivity of about 628 μΩ cm. These superior properties make it ideal for high-frequency magnetic applications.  相似文献   

11.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

12.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

13.
High-permeability magnetic films can enhance the inductance of thin-film inductors in dc-dc converters. The FeCoHfO/AlOx multilayered films were fabricated by dc reactive magnetron co-sputtering. Inserting the AlOx layers can decrease the anisotropic field of the FeCoHfO magnetic films, which was beneficial to raise the permeability of the FeCoHfO/AlOx multilayered films. With this optimum configuration of a nine-layer structure [FeCoHfO (133 nm)/AlOx (10 nm)]9, low anisotropic field (HK = 65 Oe) and high permeability (permeability over 170 at 30-50 MHz) were obtained. The permeability increased nearly six times from 30 (M1) to 175 (M9). The permeability was evidently improved by the employment multilayered coating.  相似文献   

14.
The thickness effects on the microstructure and soft magnetic properties of CoFeHfO thin films have been investigated in the range of 100–600 nm. There was a significant change in the coercivity (Hc) and the anisotropy (Hk) value with increasing film thickness, but the saturation induction and the resistivity almost remain unchanged. Hc and Hk reached a minimum value of 0.19 Oe and a maximum value of 50 Oe, respectively at 200 nm film thickness. The high saturation magnetic induction is 21 kG and resistivity is 500 μΩ cm. The origin of the changing Hc and Hk values is discussed in detail based on change of microstructure along with film thickness.  相似文献   

15.
Structure and magnetization of CoZrNb amorphous films prepared by DC magnetron sputtering have been studied as a function of film thickness (t), from 35 to 840 nm. Using comprehensive characterization, we show that the CoZrNb amorphous films possess a single phase and no nanocrystalline can be detected. The magnetic measurements indicate that the magnetization reversal of CoZrNb films is strongly dependent on t. That is, the coercivity is abruptly reduced to be lower than 4 Oe with t increasing from 35 to 105 nm, and then gradually decreases to ∼0.2 Oe as t increases. This coercivity transition versus t is accompanied by the strong magnetization reversal when t is larger than 105 nm. The results reveal that CoZrNb amorphous films with comparatively large film thickness (>100 nm) are suitable for sensors and anti-faked materials.  相似文献   

16.
Antiferromagnetic/ferromagnetic (AF/F) NiMn/Fe37Co48Hf15 films were investigated with respect to their exchange bias, in-plane unidirectional anisotropy, polarisation and high frequency behaviour. After deposition, carried out by r.f. magnetron sputtering, the films were post-annealed for 4 h at 300 °C in a static magnetic field, in order to induce exchange-bias, which results in a unidirectional anisotropy. Dependent on the presence of a bi-layer or multi-layer sandwich structure the films show a different exchange-bias field-ferromagnetic inter-layer thickness behaviour with exchange-bias fields μ0?Heb between 2 and 10 mT. The in-plane uniaxial (single film) or unidirectional anisotropy fields μ0*HUF were between 4 and 18 mT. This results in a significant increase of the cut-off frequency in the GHz range in comparison to a single Fe37Co48Hf15 film, which is shown by frequency-dependent permeability plots. High damping in the imaginary part of the permeability, i.e., high resonance line broadening could be observed for films with high coercivity μ0*Hc of around 7 mT in the easy axis of magnetisation.  相似文献   

17.
For high-density magnetic recording media, this study examined the crystal structure and the texture of electrodeposited cobalt–platinum (Co–Pt) films on Ru buffer layer. A 15-nm-thick Co–Pt film exhibited very high out-of-plane coercivity and squareness, which were 6248 Oe and 0.89, respectively. The coercivity, Hc, of Co–Pt films grown on Ru buffer layer decreased significantly with increasing thickness, possibly due to the lattice misfit of 5.4% between Co–Pt and Ru, leading to the decrease of perpendicular magnetic anisotropy (PMA) of Co–Pt films as indicated by the observed hexagonal-closed-packed (HCP) (1 1¯ 0 1) plane of Co–Pt films. According to nano beam diffraction pattern (NBDP), however, Co–Pt film grown on Ru layer of HCP exhibited mixed HCP and FCC phases. Also, cross-sectional TEM image suggests that the high PMA may result from the columnar structure of physically isolated Co–Pt grains with the c-axis perpendicular to the film plane.  相似文献   

18.
FeNiN thin films with good soft magnetic properties were synthesized on Si (1 0 0) substrates at 473 K by RF magnetron sputtering. The dependence of phase structure and magnetic properties on nitrogen partial pressure, nickel concentrations, film thickness and substrate temperature were systematically investigated. The phase evolution from α-(Fe,Ni)N to ξ-(Fe,Ni)2N with increase of nitrogen partial pressure was seen. The addition of Ni caused FeNiN films to turn from BCC structure to FCC structure. Clear reproducible striped domains appeared at the film surfaces when XNi=19.6%, which is explained by the high enough perpendicular anisotropy and the small stress in the film. All films show smooth surfaces and good soft magnetic properties compared to corresponding FeN compounds. The magnetic properties depended dramatically on the phase structure. Optimum soft magnetic properties with HC of <1 Oe are obtained between 5.0%?XNi?10.0%.  相似文献   

19.
Both single-barrier magnetic tunnel junctions (SBMTJs) and double-barrier magnetic tunnel junctions (DBMTJs) with an amorphous hardcore structure of Co60Fe20B20/Al–O/Co60Fe20B20 were microfabricated. A high TMR ratio of 102.2% at 4.2 K was observed in the SBMTJs after annealing at 265 °C for 1 h. High TMR ratio of 56.2%, low junction resistance-area product RS of 4.6 kΩ μm2, small coercivity HC=25 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 500 mV at room temperature (RT) had been achieved in such Co–Fe–B SBMTJs. Whereas, high TMR ratio of 60% at RT and 89% at 30 K, low junction resistance-area product RS of 7.8 kΩ μm2 at RT and 8.3 kΩ μm2 at 30 K, low coercivity HC=8.5 Oe at RT and HC=14 Oe at 30 K, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 1150 mV at RT had been achieved in the Co–Fe–B DBMTJs. Temperature dependence of the TMR ratio, resistance, and coercivity from 4.2 K to RT, and applied voltage dependence of the TMR ratio and resistance at RT for such amorphous MTJs were also investigated.  相似文献   

20.
The microstructure and magnetic properties of Nd-Fe-B thin films with a particulate structure were investigated. The nominal thickness of the Nd-Fe-B layer (tN) was varied from 2 to 50 nm on a (0 0 1) Mo buffer layer. The films were grown with their c-axis perpendicular to the plane, and the morphology of the film with tN=2 nm was shown to be particulate from an atomic force microscope image. The slope of the initial magnetization curve became steeper by increasing the tN value in the initial magnetization curve, indicating that the film morphology composed of single domain particles changed to that of multi-domain particles with growth. The film with tN=8 nm, which had a structure consisting of a mixture of single and multiple domain particles, showed the maximum value of the coercivity measured in the direction perpendicular to the film plane (Hc) as 19.5 kOe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号