首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

2.
Co nanowire arrays with three typical diameters of 20, 50 and 120 nm have been fabricated into anodic alumina oxide templates using an ac electrodeposition method. It is found that the crystal texture of the Co nanowires depends on the pH value of the deposition electrolyte. X-ray diffraction results show that the (1 0 0) texture appears at pH 6.2, while the diffraction peaks of (1 0 0) and (1 0 1) appear at pH 6.4 with the diameter of 20 nm. In addition, the (0 0 2), (1 0 0) and (1 0 1) peaks appear with an increase of pH value for the nanowire arrays with diameters of 50 and 120 nm, respectively. Magnetic measurements indicate the effect of structure on the magnetic properties of the nanowire arrays, which depend strongly on the different diffraction peaks, as adjusted by the pH value.  相似文献   

3.
In this study, the effects of thermal annealing temperature and duration on ZnO nanorod arrays fabricated by hydrothermal method were investigated. The annealed ZnO/Si(1 1 1) substrate was used for ZnO nanorod array growth. The effects of annealing treatment on the structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and room-temperature photoluminescence measurements. With the annealing temperature of 750 °C and the annealing duration of 10 min, both the structural and optical properties of the ZnO nanorod arrays improved significantly, as indicated in the X-ray diffraction and photoluminescence measurement.  相似文献   

4.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

5.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

6.
Optical properties of TiO2 nanowires, synthesized by two-step thermal evaporation process, have been studied experimentally and theoretically. Based on the theoretical method optical constants of nanowires have been calculated with the use of the effective medium approximation (EMA). As evidenced by X-ray diffraction patterns our synthesized nanowires, whose diameters and lengths were within the ranges of 50-90 nm and 500-1500 nm, respectively, were found to be crystalline rutile TiO2 with the major refraction being along the (1 1 0) direction. The experimental data of the reflectance of TiO2 nanowires has been obtained using spectrometer in wavelength 250-800 nm, and then, compared with the spectrum of reflectance predicted by the EMA theoretical model. Our measured experimental optical data has been found to be in good accord with our predicted results spectrum with the use of the EMA modeling; this agreement indicates that our estimation of the volume fraction from atomic force microscopy (AFM) data was accurate.  相似文献   

7.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

8.
Cobalt hydroxide ultra fine nanowires were prepared by a facile hydrothermal route using hydrogen peroxide. This method provides a simple, low cost, and large-scale route to produce β-cobalt hydroxide nanowires with an average diameter of 5 nm and a length of ca. 10 μm, which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced highly uniform nanowires of cobalt oxide (Co3O4) under temperature 500 °C in the presence of oxygen gas. The produced cobalt oxide was characterized by X-ray diffraction, transmission electronic microscopy, and selected-area electron diffraction. The results indicated that cobalt oxide nanowires with an average diameter of 10 nm and a length of ca. 600 nm have been formed, which show a predominant well-crystalline cubic face-centered like phase.  相似文献   

9.
Gallium nitride (GaN) nanowires grown on nickel-coated n-type Si (1 0 0) substrates have been synthesized using chemical vapor deposition (CVD), and the field emission properties of GaN nanowires have been studied. The results show that (1) the grown GaN nanowires, which have diameters in the range of 50-100 nm and lengths of several micrometers, are uniformly distributed on Si substrates. The characteristics of the grown GaN nanowires have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM), and through these investigations it was found that the GaN nanowires are of a good crystalline quality (2) When the emission current density is 100 μA/cm2, the necessary electric field is an open electric field of around 9.1 V/μm (at room temperature). The field enhancement factor is ∼730. The field emission properties of GaN nanowires films are related both to the surface roughness and the density of the nanowires in the film.  相似文献   

10.
BaFe12O19 nanowire arrays having single magnetic domain size (≤460 nm) in anodic aluminum oxide (AAO) templates were prepared by sol-gel and self-propagating high-temperature synthesis techniques. The diameter of the nanowire arrays is approximately 70 nm and the length is about 2-4 μm. The specimens were characterized using X-ray diffraction, vibrating sample magnetometer, field emission scan electron microscope, atomic force microscopy and microwave vector network analyzer. The magnetic properties of BaFe12O19 nanowire arrays embedded in AAO templates were measured by VSM with a field up to 1274 KA/m at room temperature. The results indicate that the nanowire arrays exhibit large saturation magnetization and high coercivity in the range of 6000 Oe and an obvious magnetic anisotropy with the easy magnetizing axis along the length of the nanowire arrays, probably due to the shape anisotropy and magneto-crystalline anisotropy. Finally the microwave absorption properties of the nanowires were discussed.  相似文献   

11.
The effect of surface roughness on subsequent growth of vanadium pentoxide (V2O5) nanowires is examined. With increasing surface roughness, both the number density and aspect ratio of V2O5 nanowires increase. Structures and morphology of obtained nanowires were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The nanowires are approximately 40-90 nm in diameter and 2 μm in length. X-ray diffraction (XRD) analysis indicates that the obtained nanowires are orthorhombic structure with (0 0 1) out-of-plane orientation. The luminescence property of V2O5 nanowires has been investigated by photoluminescence (PL) at 150 K and 300 K. PL results show intense visible emission, which is attributed to different inter-band transitions between the V 3d and O 2p band. This simple fabrication approach might be useful for fabrication of large area V2O5 nanowires arrays with high density.  相似文献   

12.
采用两步法,即先用磁控溅射在Si(100)表面生长一层ZnO籽晶层、再利用液相法制备空间取向高度一致的ZnO纳米棒阵列.用扫描电子显微镜、X射线衍射、高分辨透射电子显微镜和选区电子衍射对样品形貌和结构特征进行了表征.结果表明,ZnO纳米棒具有垂直于衬底沿c轴择优生长和空间取向高度一致的特性和比较大的长径比,X射线衍射的(XRD)(0002)峰半高宽只有0.06°,选区电子衍射也显示了优异的单晶特性.光致发光谱表明ZnO纳米棒具有非常强的紫外本征发光和非常弱的杂质或缺陷发光特性. 关键词: ZnO纳米棒阵列 ZnO籽晶层 两步法 液相生长  相似文献   

13.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

14.
Ordered Co-Pb nanowire arrays embedded in anodic alumina template were successfully fabricated by electrodeposition. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations revealed that the Co-Pb nanowires were polycrystalline with uniform diameters around 20 nm and lengths up to several micrometers. Magnetic measurements showed that the coercivity and remanence of the as-deposited Co-Pb nanowires decreased with the increase of the Pb content. After annealing the Co-Pb nanowires present higher coercivities (2.4-2.5 kOe) than that of pure Co nanowires (2.1 kOe) and the dependence of coercivity and remanence on the Pb content is inconspicuous. A phase separation of Co and Pb occurred after annealing. The familiar pinning model was employed to explain the above experimental results.  相似文献   

15.
Hydrogenated nanocrystalline Si (nc-Si:H) nanorod arrays were cost-effectively prepared on electrodeposited nickel nanocones substrates by very high frequency plasma enhanced vapor deposition. The antireflection properties of the obtained Si nanorod arrays were investigated carefully for the possible application in solar cells. It was found that the structures of nc-Si:H nanorod arrays can be tuned to obtain a very low reflectance especially in the near infrared region. The obtained Si nanostructure with well-separated nanorods, each of which had an average diameter of 200 nm and height of 700 nm, showed a reflectance value of <5% at normal incident over a wide wavelength of 400-1100 nm.  相似文献   

16.
Anatase TiO2 nanowires with a diameter of 5-10 nm and length of 500 nm to 2 μm have been successfully synthesized by modifying TiO2 nanoparticles (P25) using the microwave heating method. The microwave power, reaction pressure, and reaction time for the synthesis of TiO2 nanowires were 500 W, 0.5-3.0 MPa (corresponding to a temperature range of 175-260), and 40-70 min, respectively. X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and the BET techniques were used to investigate the phase structures, morphologies, and specific surface areas of the TiO2 nanowires. The effects of reaction time, pressure, and different post-treatment processes on the microstructures of TiO2 nanowires were discussed. It has been shown that the microwave heating method is efficient in transforming TiO2 nanoparticles to anatase TiO2 nanowires.  相似文献   

17.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

18.
Bi2Te2.7Se0.3 nanowire arrays have been fabricated by electrodeposition into the pores of an anodic aluminum oxide (AAO) template followed by annealing at 300 °C under Ar atmosphere. The as-prepared nanowires were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The nanowires are uniform single crystalline with diameter of ∼14 nm.  相似文献   

19.
Nanocrystalline thin films of CdS have been grown onto flexible plastic and titanium substrates by a simple and environmentally benign chemical bath deposition (CBD) method at room temperature. The films consist of clusters of CdS nanoparticles. The clusters of CdS nanoparticles in the films were successfully converted into nanowire (NW) networks using chemical etching process. The possible mechanism of the etching phenomenon is discussed. These films were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectrophotometry techniques, respectively. Photoelectrochemical (PEC) investigations were carried out using cell configuration as n-CdS/(1 M NaOH + 1 M Na2S + 1 M S)/C. The film of nanowires was found to be hexagonal in structure with the preferential orientation along the (0 0 2) plane. The nanowires have widths in the range of 50-150 nm and have lengths of the order of a few micrometers. Optical studies reveal that the CdS nanowires have value of band gap 2.48 eV, whereas it is 2.58 eV for nanoparticles of CdS. Finally, we report on the ideality of junction improvement of PEC cells when CdS nanoparticles photoelectrode converted into nanowires photoelectrode.  相似文献   

20.
Nickel nanowires, 20 μm long and 200 nm in diameter, were fabricated by electrodeposition into alumina templates, and characterised by superconducting quantum interference device (SQUID) magnetometer, X-ray diffraction and scanning electron microscopy. Biocompatibility studies of nickel nanowires with differentiated THP-1 cell line-derived macrophages were carried out. From a multiparametric assay, using high content analysis (HCA), the critical time points and concentrations of nickel nanowires on THP-1 cellular response were identified. The nanowires displayed little or no toxic effects on THP-1 cells over short incubation times (10 h), and at low concentrations (<100 nanowires per cell). Our findings indicate the potential suitability of these wires for biological and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号