首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Owing to poor tribological properties, titanium (Ti) alloys are usually surface-treated to enhance their surface properties. Laser surface nitriding, among others, is a common method employed to increase hardness and wear resistance for Ti alloys. Conventional laser nitriding involves surface melting of Ti alloys in a nitrogen atmosphere. This inevitably results in a roughened surface and post-treatment might be required. The present study aims at laser diffusion nitriding Ti alloys without surface melting via carefully selecting the laser processing parameters. The nitrided surface was characterized by X-ray diffractometry (XRD), optical microscopy (OM), scanning-electron microscopy (SEM), and profilometry. The nitride layer formed was about 1.62 μm upon repeated passes. The change in surface roughness resulting from laser diffusion nitriding was only minimal. Nanoindentation measurements revealed that the hardness of the nitride layer was around 11.3 GPa, being about 2.3 times that of Ti-6Al-4V. Ball-on-slab sliding wear test recorded a reduction in wear volume by about 8 times. The results of the present work thus demonstrate the feasibility of diffusion nitriding of Ti-6Al-4V by laser treatment for enhancing its surface properties and performance.  相似文献   

2.
Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.  相似文献   

3.
Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 µm could be reduce to less than 1 µm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.  相似文献   

4.
Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 μm spaced (with depths between 1 and 10 μm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analysis which showed that the O2 increased by up to 1.5 at% and decreased by up to 1.6 at% for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser-induced trench-like topographical patterns.  相似文献   

5.
The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. In particular, UV laser pulses at 308 nm are responsible for the enhancement of the hydrophilicity of the surfaces, since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers upon UV absorption. The process is reversed upon irradiation with green laser pulses at 532 nm. When the photochromic-polymeric surfaces are micropatterned using soft lithography or photo-polymerisation techniques, they can change their wettability towards a more hydrophobic or more hydrophilic behaviour depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. Furthermore, the light-induced wettability variations on these structured surfaces are greatly enhanced compared to the flat surfaces. This significant increase to the wettability changes is attributed to the combination of the photochromic interconversions upon laser irradiation together with the photoinduced reversible volume changes of the patterned features. PACS 61.82.Pv; 68.08.Bc; 81.16.Nd; 82.35.-x; 42.60.-v; 68.47.Mn  相似文献   

6.
Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.  相似文献   

7.
In this work, we present a surface study by SFM (scanning force microscopy) of three new Ti alloys of composition (in wt%) Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb, developed for biomedical applications. V was not included in these alloys since this element has been reported to be cytotoxic. The surface of these materials has been modified by a thermal treatment in air at 750 °C for different times. As a consequence of this treatment an oxide layer develops on the surface, resulting in both an improvement of the corrosion resistance and an increase of the roughness, which enhances the adhesion of the tissue cells to the implant. SFM has been used to characterize the surface structure and topography of the oxide layers grown on the three alloys. The surface roughness analysis obtained by SFM points to a correlation between the mean square roughness, the thickness of the oxide layer, and the α-phase/β-phase ratio in the base material.  相似文献   

8.
冉玲苓  曲士良  郭忠义 《中国物理 B》2010,19(3):34204-034204
This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and `coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the `coral-like' structures.  相似文献   

9.
Titanium alloys are very attractive materials because they have high specific strength, excellent corrosion and erosion resistance in many active environments. However, their low hardness values and poor tribological properties require improvement of their surface properties. The present study is concerned with the fabrication of Zr and Zr-N alloying layers in the surfaces of Ti-6Al-4V substrates by plasma surface alloying technique. The microstructure, chemical composition and hardness of the surface alloying layers were analyzed to understand the mechanisms of surface alloying and hardness improvement. The Zr and Zr-N surface alloying layers formed were homogeneous and compact, in which the surface alloying elements all displayed gradient distributions. The Zr and Zr-N surface alloying layers all enhanced the surface hardness of Ti-6Al-4V alloy. Zr-N surface alloying resulted in greater improvement in hardness and the maximum microhardness of (1.37 ± 0.04) × 103 HK was obtained at the subsurface, which was much higher than that of the untreated Ti-6Al-4V alloy. The Zr-N surface alloying layer consisted of an outer nitride layer and an inner diffusion zone of Zr and N, and its very high hardness owed to the formation of the nitride layer. The mechanism of hardness improvement of Zr surface alloyed Ti-6Al-4V alloy was solid solution strengthening.  相似文献   

10.
Composite coatings mainly containing titanium carbides and borides were produced by laser surface alloying of Ti-6Al-4V with graphite and boron mixed powders. The test results show that the coatings have higher hardness (1600-1700 HV0.1) and are more resistant to wear than the as-received sample. Laser scanning speed and the content of alloying elements (weight ratio of graphite to boron) have an effect on both the microstructure and the wear resistance of the coatings. TEM results show that strip titanium carbides and borides grow alternately and thus restrain the formation of coarse needle-like TiB and dendritic TiC crystals produced by laser alloying of titanium alloys with boron and graphite separately.  相似文献   

11.
In this study, we investigated the surface characteristics of the TiN/ZrN-coated nanotubular structure on Ti-35Ta-xHf ternary alloys for bio-implant applications. These ternary alloys contained from 3 wt.% to 15 wt.% Hf contents and were manufactured in an arc-melting furnace. The Ti-35Ta-xHf alloys were heat treated in Ar atmosphere at 1000 °C for 24 h, followed by water quenching. Formation of the nanotubular structure was achieved by an electrochemical method in 1 M H3PO4 electrolytes containing 0.8 wt.% NaF. The TiN coating and ZrN coating were subsequently prepared by DC-sputtering on the nanotubular surface. Microstructures and nanotubular morphology of the alloys were examined by FE-SEM, EDX and XRD. The microstructure showed a duplex (α′′ + β) phase structure. Traces of martensite disappeared with increasing Hf content, and the Ti-35Nb-15Hf alloy had an entirely equiaxed structure of β phase. This research has shown that highly ordered, high aspect ratio, and nanotubular morphology surface oxide layers can be formed on the ternary titanium alloys by anodization. The TiN and ZrN coatings formed on the nanotubular surfaces were uniform and stable. The top of the nanotube layers was uniformly covered with the ZrN film compared to the TiN film when the Ti-35Ta-xHf alloys had high Hf content.  相似文献   

12.
New studies have shown that tricalcium silicate powder is a bioactive material and can encourage bone-implant integration. This paper reports the synthesis of Ca2SiO4 coating on Ti-6Al-4V samples by laser irradiation under submerged conditions. The results of using a 160-1500 LDL 1.5 kW diode laser (rectangular spot = 2.5 mm × 3.5 mm, λ = 808 and 940 nm with equal intensities) is reported. A number of experiments were carried out varying laser parameters, such as scanning speed and laser power. Coatings are evaluated in terms of microstructure, elemental composition (XRD), SEM and wettability. The in vitro biocompatibility of the samples is investigated by monitoring 2T3 osteoblast cell growth on the samples.  相似文献   

13.
The current work reports on the influence of the number of laser pulses on the morphological and photoluminescence properties of SrAl2O4:Eu2+,Dy3+ thin films prepared by the pulsed laser deposition (PLD) technique. Atomic force microscopy (AFM) was used to study the surface topography and morphology of the films. The AFM data showed that the film deposited using a higher number of laser pulses was packed with a uniform layer of coarse grains. In addition, the surface of this film was shown to be relatively rougher than the films deposited at a lower number of pulses. Photoluminescence (PL) data were collected using the Cary Eclipse fluorescence spectrophotometer equipped with a monochromatic xenon lamp. An intense green photoluminescence was observed at 517 nm from the films prepared using a higher number of laser pulses. Consistent with the PL data, the decay time of the film deposited using a higher number of pulses was characteristically longer than those of the other films. The effects of laser pulses on morphology, topography and photoluminescence intensity of the SrAl2O4:Eu2+,Dy3+ thin films are discussed.  相似文献   

14.
In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H3PO4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.  相似文献   

15.
In this work, we report the progressive formation of first nanoparticles, next fine ripples, and eventually coarse ripples during the irradiation of single-crystal 6H-SiC surfaces with increasing number of femtosecond laser pulses (λ = 515 nm, τ = 250 fs, repetition rate = 100 kHz). At laser fluences greater than the single-pulse ablation threshold, nanoparticles were produced on the surface by the first few pulses over which fine ripple patterns overlapped at increased pulse numbers. As the pulse number was further increased over ten, the surface was gradually transformed into a coarse ripple–covered one. At laser fluence below the threshold, however, only fine ripples were formed nonuniformly.  相似文献   

16.
Microstructure effect on chemical etching behavior of the annealed Ti-6Al-4V and Ti-3Al-2.5V titanium (Ti) alloys was compared with that of unalloyed commercially pure titanium. The microstructural evolution of structure phases after annealing the titanium and its alloys at temperature near and above β transus and followed by furnace cooling to room temperature was studied using optical microscope, scanning electron microscope and X-ray diffraction techniques. The microstructure study illustrates that the heat treatment enhanced partitioning effect allows extensive formation of hemispherical and near spherical pits roughened surface to be readily acquired by chemically etching the annealed α + β titanium alloys. The kinetics of the chemical etching reaction process show a linear dependence on time. The annealed α + β titanium alloys that exhibit relatively lower weight loss and thickness reduction rate illustrate less chemical activity than the annealed unalloyed titanium.  相似文献   

17.
The formation of nanostructures on the surface of single-crystal silicon carbide under ablation by femtosecond laser pulses in liquid ethanol has been experimentally investigated. A 800-nm Ti:sapphire laser with a pulse duration of 210 fs was used as a radiation source. Single-scan irradiation of SiC surface leads to the formation of periodic grooves with a period of about 200 nm. Double exposure with a sample rotation by 90° between the scans gives rise to a regular array of nanostructures with average lateral size of 10 to 15 nm. It is determined that the wettability of nanostructured SiC surface is improved in comparison with the initial surface. It is shown that nanostructuring of SiC surface leads to an increase in the red light transmission by a factor of more than 60.  相似文献   

18.
激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究   总被引:6,自引:0,他引:6  
孙荣禄  杨贤金 《光学技术》2006,32(2):287-289
采用激光熔覆技术在TC4合金表面上制备了TiC陶瓷涂层,分析了熔覆层的微观组织,测试了熔覆层的硬度和摩擦磨损性能。结果表明:TiC激光熔覆层分为熔覆区和稀释区两个区域,熔覆区未受到基底的稀释,由TiC颗粒和TiC树枝晶组成;稀释区受到了基底的稀释,由TiC树枝晶和钛合金组成;TiC激光熔覆层的显微硬度在HV700~1500之间,明显地改善了TC4合金表面的摩擦和磨损性能。  相似文献   

19.
The effect of sub-threshold pulses of circularly polarized Ti:sapphire femtosecond laser system on crystalline (1 0 0) silicon wafer was investigated. Surface damage morphologies were studied by irradiating the test silicon surface with pulses (peak fluence of 0.25 J/cm2) in succession. These pulses were below the single-pulse surface damage threshold. After the few initial pulses, the observed surface damage morphologies were found to be characterized by a minor phase change region and a major surface damage area at the center, corresponding to the well-known laser-induced periodic surface structure (LIPSS). Further increase in the number of pulses resulted in the formation of new surface morphologies with different features such as ablation, modification, and re-deposited materials. These features were reproducible and more distinguishable at higher number of pulses.  相似文献   

20.
Laser-induced periodic surface structures with different spatial characteristics have been observed after multiple linearly polarized femtosecond laser pulse (120 fs, 800 nm, 1 Hz to 1 kHz pulse repetition frequency) irradiation on alloys. With the increasing number of pulses, nanoripples, classical ripples and modulation ripples with a period close to half of classical ripples have all been induced. The generation of second-harmonic has been supposed to be the main mechanism in the formation of modulation ripples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号