首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The densities (ρ) and viscosities (η) for the ternary liquid mixtures of water + N,N-dimethylformamide + monoalkanols, have been measured as a function of the composition at 298.15, 308.15, and 318.15 K. From the experimental measurements excess molar volumes (V E), Viscosity deviation (Δη), and synergy index (I s) have been evaluated. The speeds of sound have been also measured and excess isentropic compressibilities (K sE) are calculated al 298.15 K. The results are discussed and interpreted in terms of molecular package and specific interaction predominated by hydrogen bonding, been investigated.  相似文献   

2.
Excess molar volumes (V E), viscosities, refractive index, and Gibbs energies were evaluated for binary biodiesel + benzene and toluene mixtures at 298.15 and 303.15 K. The excess molar volumes V E were determined from density, while the excess Gibbs free energy of activation G*E was calculated from viscosity deviation Δη. The excess molar volume (V E), viscosity deviation (Δη), and excess Gibbs energy of activation (G*E) were fitted to the Redlich-Kister polynomial equation to derive binary coefficients and estimate the standard deviations between the experimental data and calculation results. All mixtures showed positive V E values obviously caused by increased physical interactions between biodiesel and the organic solvents.  相似文献   

3.
Excess molar volumes (V m E ) and viscosities (η) of the binary mixtures of 1,2-diethoxyethane with di-, tri- and tetrachloromethane have been measured at 298-15 K and atmospheric pressure over the entire mole fraction range. The deviations in viscosities (δlnη) and excess energies of activation (δG*E) for viscous flow have been calculated from the experimental data. The Prigogine-Flory-Patterson (PFP) model has been used to calculateV m E , and the results have been compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients and these have also been compared with experimental data for the three mixtures. The results have been discussed in terms of dipole-dipole interactions between 1,2-diethoxyethane and chloroalkanes and their magnitudes decreasing with the dipole character of the molecules. A short comparative study with results for mixtures with polyethers and chloroalkanes is also described.  相似文献   

4.
Densities (ρ) at different temperatures from 303.15 to 318.15 K, speeds of sound (u) and viscosities (η) at 303.15 K were measured for the binary mixtures of cyclohexanol with 2-chlorotoluene, 3-chlorotoluene and 4-chlorotoluene over the entire range of composition. The excess volumes (VE) for the mixtures have been computed from the experimental density data. Further, the deviation in isentropic compressibilities (Δκs) and deviation in viscosities (Δη) for the binary mixtures have been calculated from the speed of sound and viscosity data, respectively. The VE values and Δκs values were positive and Δη data were negative for all the mixtures over the whole range of composition at the measured temperatures. The calculated excess functions VE, Δκs and Δη were fitted to Redlich–Kister equation. The excess functions have been discussed in terms of molecular interactions between component molecules of the binary mixtures.  相似文献   

5.
Densities (ρ), viscosities (η) and speeds of sound (u) of the ternary mixture (1-heptanol + tetrachloroethylene + methylcyclohexane) and the corresponding binary mixtures (1-heptanol + tetrachloroethylene), (1-heptanol + methylcyclohexane) and (tetrachloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate the excess molar volumes (V E), excess isobaric thermal expansivities (α E), viscosity deviations (Δη), excess Gibbs energies of activation of viscous flow (ΔG *E) and excess isentropic compressibilities (κ S E) of the binary and ternary mixtures. The data from the binary systems were fitted by the Redlich–Kister equation whereas the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the Heric and McAllister equations. The best correlation method for the speeds of sound and isentropic compressibilities of the binary system (1-heptanol + methylcyclohexane) is found using IMR (Van Deal ideal mixing relation) and for the binary system (tetrachloroethylene + methylcyclohexane) it is found using the NR (Nomoto relation) and for the binary system (1-heptanol + tetrachloroethylene) and the ternary system (1-heptanol + trichloroethylene + methylcyclohexane) it is obtained from the FLT (Jacobson free length theory).  相似文献   

6.
Measurements of the ultrasonic velocity (u), density (ρ) and refractive index (n) for binary mixtures of polyethylene glycol 250 dimethyl ether with 1-propanol and 1-butanol have been made at three temperatures (T=293, 303 and 31 K) over the entire composition range in order to investigate the nature of intermolecular interactions between the components of these liquid mixtures. Various excess thermodynamic properties such as the excess ultrasonic velocity (Δu), deviation in isentropic compressibility (Δk S ), excess intermolecular free length (LfE)(L_{\mathrm{f}}^{\mathrm{E}}), excess acoustic impedance (Z E), excess pseudo-Grüneisen parameter (Γ E), and molar refraction deviation (ΔR m) were calculated using experimental values of the ultrasonic velocity, density and refractive index and were then represented with the Redlich-Kister polynomial equation. The observed excess deviation parameter values were explained on the basis of the strength of intermolecular interactions between the components of the mixtures. Estimations of the refractive index and ultrasonic velocity have also been made using various empirical relations and are discussed in terms of the average percentage deviations (APD).  相似文献   

7.
Summary. Density (ρ) and viscosity (η) values of the binary mixtures of DMP + 1-pentanol, 1-butanol, and 1-propanol over the entire range of mole fraction at 298.15 and 303.15 K were measured in atmospheric pressure. The excess molar volume (V E), viscosity deviations (Δη), and excess Gibbs energy of activation for viscous flow (G*E) were calculated from the experimental measurements. These results were fitted to Redlich–Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of McAllister. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

8.
The excess molar volume (V E), viscosity deviations (Δη) and Gibbs excess energy of activation for viscous flow (G∗E) have been investigated from density (ρ) and viscosity (η) measurements of eight binary mixtures of 1,3-dioxolane with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and i-amyl alcohol over the entire range of mole fractions at 303.15 K. The viscosity data have been correlated with the Grunberg and Nissan equation. Furthermore, excess isentropic compressibilities (KSE) have been calculated from ultrasonic speed measurements of these binary mixtures at 303.15 K. The deviations have been fitted by a Redlich–Kister equation and the results are discussed in terms of molecular interactions and structural effects. The excess properties are found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures. The systems studied exhibit very strong cross association through hydrogen bonding.  相似文献   

9.

Abstract  

Experimental densities ρ, viscosities η, and refractive indices n D of the ternary mixtures consisting of 2-methyltetrahydrofuran + chlorobenzene + cyclopentanone and constituted binary mixtures were measured at T = 298.15 K for the liquid region and at ambient pressure for the whole composition range. Excess molar volumes V\textm\textEV_{\text{m}}^{\text{E}}, deviations in the viscosity Δη, and deviations in the refractive index Δn D from the mole fraction average for the mixtures were derived from the experimental data. The excess partial molar volumes V\textm,i\textEV_{{\text{m}},i}^{\text{E}} were also calculated. The binary and ternary data of V\textm\textEV_{\text{m}}^{\text{E}}, Δη, and Δn D were correlated as a function of the mole fraction by using the Redlich–Kister and the Cibulka equations, respectively. McAllister’s three-body interaction model is used for correlating the kinematic viscosity of binary mixtures with the mole fraction.  相似文献   

10.
The excess molar volumes, V mE, viscosity deviations, Δη, and excess Gibbs energies of activation, ΔG *E, of viscous flow have been investigated from density and viscosity measurements for two ternary mixtures, 1-butanol + triethylamine + cyclohexane and 1-pentanol + triethylamine + cyclohexane, and corresponding binaries at 303.15 K and atmospheric pressure over the entire range of composition. The empirical equations due to Redlich-Kister, Kohler, Rastogi et al., Jacob-Fitzner, Tsao-Smith, Lark et al., Heric-Brewer, and Singh et al. have been employed to correlate V mE, Δη and ΔG *E of the ternary mixtures with their corresponding binary parameters. The results are discussed in terms of the molecular interactions between the components of the mixture. Further, the Extended Real Associated Solution, ERAS, model has been applied to V mE for the present binary and ternary mixtures, and the results are compared with experimental data.  相似文献   

11.
The refractive index, n D , and density, ρ, of binary mixtures of monoalcohols + water, have been measured at a temperature of 298.15,K and atmospheric pressure. The variation of the refractive indices of these solutions has also been determined with temperature in the range T = (278.15 to 338.15) K and atmospheric pressure. A comparative study has been made of the refractive indices obtained experimentally and those calculated by means of the Lorentz-Lorenz [Theory of Electrons, Dover Phoenix (1952)] and Gladstone-Dale relations [Trans. R. Soc. London 148:887–902 (1858)]; in all cases, the Gladstone–Dale equation was seen to afford values similar to those obtained experimentally. Calculations have been made of the excess molar volumes, V E, and the molar refraction deviations, ΔR, of these mixtures and the differences between the experimental values for refractive index and those obtained by means of the Gladstone–Dale equation. Values of V E were compared with others in the literature. In all cases the V E values were negative, and in all cases, except in the methanol + water, ΔR showed a maximum for x = 0.8.  相似文献   

12.
    
Ultrasonic sound velocities and densities of binary mixtures of 1-bromobutane with propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol and octan-l-ol have been experimentally determined at 303·15 K. Isentropic compressibilities (K s) and deviations in isentropic compressibilities (ΔK S) have been calculated from the results. The values of ΔKS are almost positive over the entire range of composition in all six binary liquid mixtures. The experimental results are explained in terms of depolymerisation of hydrogen-bonded alcohol aggregates, decrease in dipolar association and weak hydrogen-bonding interaction of the type Br---H-O between unlike molecules.  相似文献   

13.
The densities and viscosities of several sulfates, viz., ammonium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, zinc sulfate and cadmium sulfate in aqueous binary mixtures of formamide (FA) have been determined at 298.15, 308.15, and 318.15 K and at atmospheric pressure. The ultrasonic speeds of the electrolytic solutions have also been measured at 298.15 K. Apparent molar volumes (ϕ V ), viscosity B-coefficients and adiabatic compressibilities (K S) of these electrolytic solutions were calculated from the experimental densitiy, viscosity and acoustic data. The density and viscosity data were evaluated by using Masson’s and Jones-Dole equation respectively; the derived parameters have been analyzed in terms of ion-ion and ion-solvent interactions. The structure making/breaking capacities of the electrolytes have been inferred from the sign of (∂2ϕ V 0/∂T 2) P . The results showed that all the electrolytes act as structure-makers in these media. Also the compressibility data indicated electrostriction of the solvent molecules around the cations. The activation parameters of viscous flow were also determined and discussed by the application of transition state theory.  相似文献   

14.
The viscosity deviation (Δη), the excess molar volume (V E) and the ultrasonic speed (u) have been investigated from viscosity (η) and density (ρ ) measurements of binary liquid mixtures of 1,2-dimethyoxyethane with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol or octan-1-ol over the entire range of composition at 298.15 K. The excess volumes are negative over the entire range of composition for all of the mixtures with the exception of hexan-1-ol and octan-1-ol. The excess isentropic compressibilities (K S E) and viscosity deviations are negative for all of the mixtures. The magnitudes of the negative values of V E decrease with the number of carbon atoms of the alkan-1-ol. The trend of increasing K S E values with the chain length of the alkanol is similar to that observed in the case of V E. Graphs of V E, Δ η, K S E, Δ u, L f E and Z E against composition are presented as a basis for a qualitative discussion of the results.  相似文献   

15.
Densities and refractive indices have been measured for binary mixtures of 1-propyronitrile-3-hexylimidazolium bromide + ethanol in the temperature range 293.15–323.15 K. From the experimental data the excess molar volume V E, refractive index deviation Δn D, and the coefficient of thermal expansion α were calculated and fitted to fifth- and third-order Redlich–Kister type equations, respectively. Using the measured densities, the apparent molar volumes (V ϕ ), limiting apparent molar volumes (Vf0V_{\phi}^{0}) and limiting apparent molar expansivities (Ef 0E_{\phi} ^{0}) were also determined and the details are discussed.  相似文献   

16.
Densities (d 12) and viscosities (η12) have been measured for 2-methoxyethanol (ME) with tetrahydrofuran (THF) binary liquid mixtures over the whole composition range at various temperatures ranging from 291.15 to 308.15 K. The experimental data were used to test some empirical equations of the type: y 12=y 12(t) and y 12=y 12(X 1) [where: y 12d 12 or η12]. From all these data, the excess molar volumes (V 12 E), the excess viscosities (η12 E) and excess Gibbs activation energies (ΔG *) of viscous flow were calculated. These structural parameters as a function of concentration suggest the formation of 3ME⋅THF and 2ME⋅THF types of intermolecular complexes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Densities, viscosities and ultrasonic speeds of sound for binary mixtures of 1,2-dimethoxyethane (DME) with benzene, toluene, chlorobenzene, benzyl chloride, benzaldehyde, nitrobenzene, and aniline are reported over the entire composition range at ambient pressure and temperature (i.e., T=298.15 K and p=1.01×105 Pa). These experimental data were utilized to derive the excess molar volumes (VmEV_{\mathrm{m}}^{\mathrm{E}}), excess viscosities (η E), and various acoustic parameters including the deviation in isentropic compressibility (Δκ S ), internal pressure (π I), and excess enthalpy (H E). From the excess molar volumes (VmEV_{\mathrm{m}}^{\mathrm{E}}), the excess partial molar volumes ([`(V)]m,1E\overline{V}_{\mathrm{m},1}^{\mathrm{E}} and [`(V)]m,2E\overline{V}_{\mathrm{m},2}^{\mathrm{E}}) and excess partial molar volumes at infinite dilution ([`(V)]m,10,E\overline{V}_{\mathrm{m},1}^{0,\mathrm{E}} and [`(V)]m,20,E\overline{V}_{\mathrm{m},2}^{0,\mathrm{E}}) were derived and discussed for each liquid component in the mixtures. The excess/deviation properties were found to be either negative or positive, depending on the molecular interactions and the nature of the liquid mixtures.  相似文献   

18.
The excess molar volume VE, shear viscosity deviation Δη and excess Gibbs energy of activation ΔGE of viscous flow have been investigated by using density (ρ) and shear viscosity (η) measurements for isobutyric acid + water (IBA+W) mixtures over the entire range of mole fractions at five different temperatures, both near and close to the critical temperature (2.055K ≤ (TTc)≤ 13.055K). The results were also fitted with the Redlich–Kister equation. This system exhibited very large negative values of VE and very large positive values of Δη due to increased hydrogen bonding interactions and correlation length between unlike molecules in the critical region and to very large differences between the molar volumes of the pure components at low temperatures. The activation parameters ΔH and ΔS have been also calculated and show that the critical region has an important effect on the volumetric properties.  相似文献   

19.
In this work, the physical properties, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and atmospheric pressure for the binary mixtures (methylcyclopentane with acetone, butanone, and 2-pentanone) at several temperatures T = (293.15, 298.15, and 303.15) K along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility and viscosity deviation for the binary systems at the above-mentioned temperatures were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with ketones (CHcy/CO) have been determined for their application in the predictive UNIFAC-VISCO method.  相似文献   

20.
Densities, viscosities, speed of sound, and IR spectroscopy of binary mixtures of tert-butyl acetate (TBA) with benzene, methylbenzene, and ethylbenzene have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, speed of sound, and IR spectroscopy; excess molar volumes VE, deviations in viscosity Δη, deviations in isentropic compressibility Δκs and stretching frequency ν have been calculated. The excess molar volumes and deviations in isentropic compressibility are positive for the binaries studied over the whole composition, while deviations in viscosities are negative for the binary mixtures. The excess molar volumes, deviations in viscosity, and deviations in isentropic compressibility have been fitted to the Redlich–Kister polynomial equation. The Jouyban–Acree model is used to correlate the experimental values of density, viscosity, and speed of sound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号