首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using 75Se as a radiotracer, the preatomization behaviour of selenium in the graphite furnace was studied. The selenium forms investigated included Se(-II)-methionine, selenite, and selenate in a 0.2% HNO3 solution, and in a 0.2% HNO3 solution containing 1% NaCl. The effect of nickel nitrate and of the mixture of palladium/magnesium nitrates as matrix modifiers and of boron nitride coating of the graphite tube on the behaviour of selenium was investigated. The best stabilization effect for all oxidation states of selenium in the conventional graphite tube was achieved by using the mixture Pd/Mg. A considerable degree of modifier-free stabilization of selenuium could be achieved in boron nitride coated tubes. After the conversion of Se(IV) to a volatile piaselenol, a quantitative preatomization separation of Se(IV) from Se(VI) in the boron nitride coated tube was possible. However problems with these newtype tubes still to be solved include the need to increase the thermal stability of the coating.  相似文献   

2.
Analytical methods for the speciation of selenium compounds: a review   总被引:1,自引:0,他引:1  
Selenium, like sulphur, exists in the environment in several oxidation states and as a variety of inorganic and organic compounds. Dissolved inorganic selenium can be found in natural waters as selenide Se (–II), as colloidal elemental selenium Se (0), as selenite anions HSeO 3 and SeO 3 2– i.e. Se (+IV) and as the selenate anion (SeO 4 2– ) i.e. Se (+VI). Organic forms of selenium that may be found in organisms, air or in the aqueous environment, are volatile (methylselenides) or non volatile (trimethylselenonium ion, selenoamino acids and their derivatives). Knowledge of the different chemical forms and their environmental and biomedical distribution is important because of the dependence of bioavailability and toxicity on speciation. This paper reviews the different analytical methods used for the speciation of selenium compounds, with special attention to inorganic selenium and organoselenium species.  相似文献   

3.
Abstract

Assimilation of selenium (Se) by Escherichia coli as (75Se)-selenite, selenate, selenomethionine, selenocystine and Se?CH3-selenocystine revealed that (a) selenoamino acids from a culture media are more completely assimilated than selenite or selenate and (b) that the amount of selenite is assimilated three to four times selenate. Most (>95%) of the Se assimilated by E. coli could not be solubilized by sonication and ethanol extraction but much (28% to 70%) of the Se, except Se from selenomethionine, was removed by alkaline dialysis. Se from selenocystine and from Se?CH3-selenocystine dialyzed from intact cells, whereas Se from selenite and selenate did not. Dialyzable Se is that Se probably present in selenotrisulfide (R?S?Se?S?R) bonds or bound nonspecifically. Analysis of the soluble Se metabolites from selenite, selenate, selenomethionine and selenocystine showed that E. coli produces at least one major metabolic product common to all substrates which upon chromatography appeared to be selenocysteic acid. In monogastric animals selenite and selenate Se does not enter the primary protein structure as amino acids yet metabolites of selenite, selenate and selenocystine produced by E. coli could enter the primary protein structure of animals in minute amounts.  相似文献   

4.
High-performance liquid chromatography (HPLC) coupled to an ICP-MS with an octapole reaction system (ORS) has been used to carry out quantitative speciation of selenium (Se) and arsenic (As) in the stream waters of a refining process. The argon dimers interfering with the 78Se and 80Se isotopes were suppressed by pressurizing the octapole chamber with 3.1 mL min−1 H2 and 0.5 mL min−1 He. Four arsenic species arsenite—As(III), arsenate (As(V)), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)—and three inorganic Se species—selenite Se(IV), selenate Se(VI), and selenocyanate (SeCN)—were separated in a single run by ion chromatography (IC) using gradient elution with 100 mmol L−1 NH4NO3, pH 8.5, adjusted by addition of NH3, as eluent. Repeatabilities of peak position and of peak area evaluation were better than 1% and about 3%, respectively. Detection limits (as 3σ of the baseline noise) were 81, 56, and 75 ng L−1 for Se(IV), Se(VI), and SeCN, respectively, and 22, 19, 25, and 16 ng L−1 for As(III), As(V), MMA, and DMA, respectively. Calibration curve R 2 values ranged between 0.996 and 0.999 for the arsenic and selenium species. Column recovery for ion chromatography was calculated to be 97 ± 6% for combined arsenic species and 98 ± 3% for combined selenium species. Because certified reference materials for As and Se speciation studies are still not commercially available, in order to check accuracy and precision the method was applied to certified reference materials, BCR 714, BCR 1714, and BCR 715 and to two different refinery samples—inlet and outlet wastewater. The method was successfully used to study the quantitative speciation of selenium and arsenic in petroleum refinery wastewaters.  相似文献   

5.
A simple method was developed for separation of bromine from metallic selenium. This method enables easy preparation of77Br by proton bombardment of metallic selenium (enriched77Se or78Se). The method consists of heating the metallic selenium with H2O to 300°C in a small autoclave for about three hours. The77Br is distilled from the obtained solution after the addition of H2SO4+K2Cr2O7. The step also removes the arsenic produced together with the selenium.  相似文献   

6.
《中国化学快报》2022,33(7):3444-3450
A simple and convenient method has been developed for the pre-concentration and separation of inorganic selenium species from environmental water samples using anion exchange chromatographic column combined with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) measurement. 75Se(IV) and 75Se(VI) were prepared and used as tracers during the experiments. The volatility of selenium during solution evaporation was investigated to establish a reliable water samples pretreatment procedure. The parameters which affect the uptake of Se(IV) and Se(VI) on Dowex1 × 8 resin was optimized and the procedure for Se(IV) and Se(VI) separation was proposed. Both Se(IV) and Se(VI) are retained on the column in natural or alkaline solution with high distribution coefficient. The successive gradient elution of pre-concentrated species of selenium with HNO3 solution allows to differentiate between them. Se(IV) and Se(VI) finally were eluted with 0.05 mol/L HNO3 and 5.0 mol/L HNO3, respectively. The proposed method has been successfully verified using the certified reference materials (CRMs) of real water samples, and spiked recoveries for real samples were 98%-104% with 5% relative standard deviations (RSDs). The developed procedure is proved to be reliable and can be used for the rapid determination of selenium species in environmental water samples.  相似文献   

7.
The products formed during thermal neutron irradiation of diphenyl selenium have been analyzed by gas chromatography. Possible reaction mechanisms are discussed to explain the principal reaction product observed. The organic yields of75Se,83Se and81mSe formed have been determined. The retention values obtained were 9.7±2.0, 8.3±1.1 and 10.4±2.1, respectively. These low values indicate that in all three cases most of the molecules are broken after the /n, / process. No isotope effect was observed.  相似文献   

8.
The first selenium containing non-detergent sulphobetaines are described. They have been prepared in multi-gram quantities from readily available pyridyl precursors. Incorporation of selenium was achieved using nucleophilic organoselenide anions. The resulting products were shown by 77Se NMR spectroscopy to be homogeneous with respect to selenium oxidation state.  相似文献   

9.
We describe a method for the determination of inorganic selenium in water samples via gas-phase chemiluminescence (GPCL). Se(IV) was first derivatized with 4-nitro-o-phenylenediamine to form 5-nitropiazselenol. The latter was decomposed by persulfate through photocatalytic oxidation to give Se(VI), which was reduced to Se(IV). Selenium hydride was generated from Se(IV) through reduction with sodium borohydride and then preconcentrated using cryotrapping. The cryotrapped hydride was evaporated and carried to a reaction chamber by a stream of helium, where it produced GPCL as a result of ozonation. The method exhibits a wide linear calibration range (from 0.5?μg?L?1 to 1.0?mg?L?1) with a detection limit of 0.12?μg?L?1 (for n?=?11), and a relative standard deviation of 3.90?% (at n?=?11) at 5.0?μg?L?1 level of selenium. The method was applied to the determination of inorganic selenium in water samples and gave satisfactory results.
Figure
A GPCL detection system is developed for the determination of inorganic selenium in water samples. By using analytical technique in this figure, such as derivatization, UV/ S2O 8 2- decomposition, stopped-flow injection and cryotrapping, the system can separate and preconcentrate the analyte from the matrix, then produce GPCL as a result of ozonation. The method was simple, sensitive with low-cost instrumentation.  相似文献   

10.
Determination of Se(IV) and Se(VI) in high saline media was investigated by cathodic stripping voltammetry (CSV). The voltammetric method was applied to assay selenium in seawater, hydrothermal and hemodialysis fluids. The influence of ionic strength on selenium determination is discussed. The CSV method was based on the co-electrodeposition of Se(IV) with Cu(II) ions and Se(VI) determined by difference after sample UV-irradiation for photolytic selenium reduction. UV-irradiation was also used as sample pre-treatment for organic matter decomposition. Detection limit of 0.030 μg L−1 (240 s deposition time) and relative standard deviation (RSD) of 6.19% (n = 5) for 5.0 μg L−1 of Se(IV) were calculated. Linear calibration range for selenium was observed from 1.0 to 100.0 μg L−1. Concerning the pre-treatment step, best results were obtained by using 60 min UV-irradiation interval in H2O2/HCl medium. Se(VI) was reduced to the Se(IV) electroactive species with recoveries between 91.7% and 112.9%. Interferents were also investigated.  相似文献   

11.
 A method has been proposed for the determination of trace levels of inorganic selenium in organoselenium (selenosugar) oral nutrition liquids using hydride generation-graphite furnace atomic absorption spectrometry (HG-GFAAS), taking advantage of the fact that this organic selenium compound did not generate volatile hydride upon reduction. K2S2O8 was selected for the decomposition of the compound in a boiling water bath. Selenium was found to give a sharp analytical signal upon reduction with NaBH4 in 1.0 mol L-1HCl medium. The characteristic mass giving an integrated absorbance of 0.0044 s was 21 pg. An absolute detection limit (3s) of 36 pg was obtained. The recovery was in the range of 94.2–102.1%. Less than parts per million levels of inorganic Se in the presence of organic selenium can be determined. Received: 7 November 1996/Revised: 13 January 1997/Accepted: 29 January 1997  相似文献   

12.
 A method has been proposed for the determination of trace levels of inorganic selenium in organoselenium (selenosugar) oral nutrition liquids using hydride generation-graphite furnace atomic absorption spectrometry (HG-GFAAS), taking advantage of the fact that this organic selenium compound did not generate volatile hydride upon reduction. K2S2O8 was selected for the decomposition of the compound in a boiling water bath. Selenium was found to give a sharp analytical signal upon reduction with NaBH4 in 1.0 mol L-1HCl medium. The characteristic mass giving an integrated absorbance of 0.0044 s was 21 pg. An absolute detection limit (3s) of 36 pg was obtained. The recovery was in the range of 94.2–102.1%. Less than parts per million levels of inorganic Se in the presence of organic selenium can be determined. Received: 7 November 1996/Revised: 13 January 1997/Accepted: 29 January 1997  相似文献   

13.
Electroreduction of Se(+4) and electrooxidation of Se(?2) were studied at mercury electrodes in acidic media and an improved mechanism of the reduction process was proposed. This mechanism takes into account the fact that the reduction path is concentration-dependent. At lower concentrations of Se(+4), mercury selenide and hydrogen selenide are formed at various potentials. At higher Se(+4) concentrations the electrode quickly becomes covered by a rigid deposit of mercury selenide and then the reduction starts to proceed to elemental selenium. Another form of selenium was formed in the vicinity of the mercury surface due to a chemical reaction between H2SeO3 and H2Se. Oxidation of hydrogen selenide proceeds similarly, in the sense that after coverage of the electrode surface by a deposit of mercury selenide the oxidation starts to proceed to elemental selenium. The cathodic stripping peak of mercury selenide can be obtained down to 2 × 10?8M of Se(+4), but this peak is often split and therefore the determination of traces of Se(+4) by the cathodic stripping technique is cumbersome.  相似文献   

14.
The recovery of selenium75Se added as selenite to human blood and to mixed food, and the recovery of biologically incorporated75Se from different rat tissues were determined by using four mineralization methods. The recoveries of75Se after dry ashing /HNO3, Mg/NO3/2/ and after three wet digestion methods — 1. HNO3, HClO4 2. HNO3, HClO4, H2SO4 3. HNO3, HClO4, MgCl2 were as follows: 50–106%, 96–99%, 92–99% and 97–100%, resp. Losses of75Se in wet digestion /HNO3, HClO4/ were observed at the end of the procedure, when an excess of acids was evaporated. The addition of MgCl2 to the digestion mixture prevented the escape of75Se and thus permitted the total evaporation of the digest without any loss of selenium.  相似文献   

15.
The oxidative thermal stability along with the identification of the volatile decomposition products under heating of terpene acrylate homopolymers by using TG/DSC/FTIR/QMS-coupled method was presented. It was found that the decomposition of poly(geranyl acrylate) and poly(neryl acrylate) had quite different course as compared to the decomposition process of poly(citronellyl acrylate) under oxidative conditions. FTIR and QMS analyses confirmed mainly the formation of terpene hydrocarbons, propane, propene, acetic acid, CO, CO2 and H2O as the volatile decomposition products under heating of the hompolymers. The results obtained indicated the complex decomposition process of terpene acrylate homopolymers including the random ester bond scissors, the random main carbon chain scissors, decarboxylation, dehydration and oxidation processes of formed gaseous decomposition products and a residue which led to the full decomposition of homopolymers at ca. 600 °C under oxidative conditions.  相似文献   

16.
Sulfite and SeS2O 6 2− reduce SeO 3 2− in acidic solutions to selenium. Selenandisulfonates are observed as intermediate products. They are separated by high voltage paper ionophoresis in acidic basis electrolytes and identified on the paper by application of35S- and75Se-labelled compounds. The formation of selenandisulfonates depends on thepH of the solution. In neutral systems species exist with up to 4 Seatoms in the chain, in acidic solutions species with up to 7 Se-atoms in the chain are found. Se7S2O 6 2− has been detected for the first time. Selenium precipitates by the decomposition of the selenandisulfonates with the longest chains.   相似文献   

17.
Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 μmol/L Na2SeO3), UVA (40 μmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.  相似文献   

18.
We have developed an on-line sequential photocatalyst-assisted digestion and vaporization device (SPADVD), which operates through the nano-TiO2-catalyzed photo-oxidation and reduction of selenium (Se) species, for coupling between anion exchange chromatography (LC) and inductively coupled plasma mass spectrometry (ICP-MS) systems to provide a simple and sensitive hyphenated method for the speciation analysis of Se species without the need for conventional chemical digestion and vaporization techniques. Because our proposed on-line SPADVD allows both organic and inorganic Se species in the column effluent to be converted on-line into volatile Se products, which are then measured directly through ICP-MS, the complexity of the procedure and the probability of contamination arising from the use of additional chemicals are both low. Under the optimized conditions for SPADVD – using 1 g of nano-TiO2 per liter, at pH 3, and illuminating for 80 s – we found that Se(IV), Se(VI), and selenomethionine (SeMet) were all converted quantitatively into volatile Se products. In addition, because the digestion and vaporization efficiencies of all the tested selenicals were improved when using our proposed on-line LC/SPADVD/ICP-MS system, the detection limits for Se(IV), Se(VI), and SeMet were all in the nanogram-per-liter range (based on 3σ). A series of validation experiments – analysis of neat and spiked extracted samples – indicated that our proposed methods could be applied satisfactorily to the speciation analysis of organic and inorganic Se species in the extracts of Se-enriched supplements.  相似文献   

19.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

20.
The amount of volatile dimethylselenide (DMSe) in breath has been monitored after ingestion of sub-toxic amounts of selenium (300 μg 77Se, as selenite) by a healthy male volunteer. The breath samples were collected in Tedlar bags every hour in the first 12 h and then at longer intervals for the next 10 days. The samples were subjected to speciation analysis for volatile selenium compounds by use of cryotrapping–cryofocussing–GC–ICP–MS. Simultaneously, all urine was collected and subjected to total selenium determination by use of ICP–MS. By monitoring m/z 82 and 77, background or dietary selenium and selenium from the administered selenite were simultaneously determined in the urine and in the breath—dietary selenium only was measured by monitoring m/z 82 whereas the amount of spiked 77Se (99.1% [enriched spike]) and naturally occurring selenium (7.6% [natural abundance]) were measured by monitoring m/z 77. Quantification of DMSe was performed by using DMSe gas samples prepared in Tedlar bags (linear range 10–300 pg, R 2=0.996, detection limit of Se as DMSe was 10 pg Se, or 0.02 ng L−1, when 0.5 L gas was collected). Dimethylselenide was the only selenium species detected in breath samples before and after the ingestion of 77Se-enriched selenite. Additional DM77Se was identified as early as 15 min after ingestion of the isotopically-labelled selenite. Although the maximum concentration of 77Se in DMSe was recorded 90 min after ingestion, the natural isotope ratio for selenium in DMSe (77/82) was not reached after 20 days. The concentration of DMSe correlated with the total Se concentration in the urine during the experiment (R 2=0.80). Furthermore, the sub-toxic dose of 300 μg selenium led to a significant increase of DMSe and renal excretion of background selenium, confirming that selenium ingested as selenite is homeostatically controlled by excretion. The maximum concentration of DMSe resulting from the spiked selenite was 1.4 ng Se L−1 whereas the dietary background level was less than 0.4 ng Se L−1. Overall excretion as DMSe was calculated to be 11.2% from the ingested selenite within the first 10 days whereas urinary excretion accounts for nearly 18.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号