首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
It is conjectured that Hadamard matrices exist for all orders 4t (t>0). However, despite a sustained effort over more than five decades, the strongest overall existence results are asymptotic results of the form: for all odd natural numbers k, there is a Hadamard matrix of order k2[a+blog2k], where a and b are fixed non-negative constants. To prove the Hadamard Conjecture, it is sufficient to show that we may take a=2 and b=0. Since Seberry's ground-breaking result, which showed that we may take a=0 and b=2, there have been several improvements where b has been by stages reduced to 3/8. In this paper, we show that for all ?>0, the set of odd numbers k for which there is a Hadamard matrix of order k22+[?log2k] has positive density in the set of natural numbers. The proof adapts a number-theoretic argument of Erdos and Odlyzko to show that there are enough Paley Hadamard matrices to give the result.  相似文献   

3.
Recent work on integral equivalence of Hadamard matrices and block designs is generalized in two directions. We first determine the two greatest invariants under integral equivalence of the incidence matrix of a symmetric balanced incomplete block design. This enables us to write down all the invariants in the case wherekλ is square-fre. Some other results on the sequence of invariants are presented. Secondly we consider the existence of inequivalent Hadamard matrices under integral equivalence. We show that if there is a skew-Hadamard matrix of order 8m then there are two inequivalent Hadamard matrices of order 16m, that and there are precisely eleven inequivalent Hadamard matrices of order 32.  相似文献   

4.
In 1968 Cryer conjectured that the growth factor of an n × n Hadamard matrix is n. In 1988 Day and Peterson proved this only for the Hadamard–Sylvester class. In 1995 Edelman and Mascarenhas proved that the growth factor of a Hadamard matrix of order 12 is 12. In the present paper we demonstrate the pivot structures of a Hadamard matrix of order 16 and prove for the first time that its growth factor is 16. The study is divided in two parts: we calculate pivots from the beginning and pivots from the end of the pivot pattern. For the first part we develop counting techniques based on symbolic manipulation for specifying the existence or non‐existence of specific submatrices inside the first rows of a Hadamard matrix, and so we can calculate values of principal minors. For the second part we exploit sophisticated numerical techniques that facilitate the computations of all possible (n ? j) × (n ? j) minors of Hadamard matrices for various values of j. The pivot patterns are obtained by utilizing appropriately the fact that the pivots appearing after the application of Gaussian elimination on a completely pivoted matrix are given as quotients of principal minors of the matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The only primes which can divide the order of the automorphism group of a Hadamard matrix of order 28 are 13, 7, 3, and 2, and there are precisely four inequivalent matrices with automorphisms of order 13 (Tonchev, J. Combin. Theory Ser. A35 (1983), 43–57). In this paper we show that there are exactly twelve inequivalent Hadamard matrices of order 28 with automorphisms of order 7. In particular, there are precisely seven matrices with transitive automorphism groups.  相似文献   

6.
In this paper, we investigate Hadamard matrices of order 2(p + 1) with an automorphism of odd prime order p. In particular, the classification of such Hadamard matrices for the cases p = 19 and 23 is given. Self‐dual codes related to such Hadamard matrices are also investigated. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 367–380, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10052  相似文献   

7.
Let D 2p be a dihedral group of order 2p, where p is an odd integer. Let ZD 2p be the group ring of D 2p over the ring Z of integers. We identify elements of ZD 2p and their matrices of the regular representation of ZD 2p . Recently we characterized the Hadamard matrices of order 28 ([6] and [7]). There are exactly 487 Hadamard matrices of order 28, up to equivalence. In these matrices there exist matrices with some interesting properties. That is, these are constructed by elements of ZD 6. We discuss relation of ZD 2p and Hadamard matrices of order n=8p+4, and give some examples of Hadamard matrices constructed by dihedral groups.  相似文献   

8.
9.
The Hadamard matrices of order 44 possessing automorphisms of order 7 are classified. The number of their equivalence classes is 384. The order of their full automorphism group is calculated. These Hadamard matrices yield 1683 nonisomorphic 3-(44,22,10) designs, 57932 nonisomorphic 2-(43,21,10) designs, and two inequivalent extremal binary self-dual doubly even codes of length 88 (one of them being new).  相似文献   

10.
Let V = {1, 2, . . . , M} and let be a set of Hadamard matrices with the property that the magnitude of the dot product of any two rows of distinct matrices is bounded above. A Hadamard partition is any partition of the set of all rows of the matrices H i into Hadamard matrices. Such partitions have an application to the security of quasi-synchronous code-division multiple-access radio systems when loosely synchronized (LS) codes are used as spreading codes. A new generation of LS code can be used for each information bit to be spread. For each generation, a Hadamard matrix from some partition is selected for use in the code construction. This code evolution increases security against eavesdropping and jamming. One security aspect requires that the number of Hadamard partitions be large. Thus the number of partitions is studied here. If a Kerdock code construction is used for the set of matrices, the Hadamard partition constructed is shown to be unique. It is also shown here that this is not the case if a Gold (or Gold-like) code construction is used. In this case the number of Hadamard partitions can be enumerated, and is very large.   相似文献   

11.
Weaving is a matrix construction developed in 1990 for the purpose of obtaining new weighing matrices. Hadamard matrices obtained by weaving have the same orders as those obtained using the Kronecker product, but weaving affords greater control over the internal structure of matrices constructed, leading to many new Hadamard equivalence classes among these known orders. It is known that different classes of Hadamard matrices may have different maximum excess. We explain why those classes with smaller excess may be of interest, apply the method of weaving to explore this question, and obtain constructions for new Hadamard matrices with maximum excess in their respective classes. With this method, we are also able to construct Hadamard matrices of near‐maximal excess with ease, in orders too large for other by‐hand constructions to be of much value. We obtain new lower bounds for the maximum excess among Hadamard matrices in some orders by constructing candidates for the largest excess. For example, we construct a Hadamard matrix with excess 1408 in order 128, larger than all previously known values. We obtain classes of Hadamard matrices of order 96 with maximum excess 912 and 920, which demonstrates that the maximum excess for classes of that order may assume at least three different values. Since the excess of a woven Hadamard matrix is determined by the row sums of the matrices used to weave it, we also investigate the properties of row sums of Hadamard matrices and give lists of them in small orders. © 2004 Wiley Periodicals, Inc. J Combin Designs 12: 233–255, 2004.  相似文献   

12.
There are exactly 60 inequivalent Hadamard matrices of order 24. In this note, we give a classification of the self‐dual ??5‐codes of length 48 constructed from the Hadamard matrices of order 24. © 2004 Wiley Periodicals, Inc.  相似文献   

13.
In this paper, we present two constructions of divisible difference sets based on skew Hadamard difference sets. A special class of Hadamard difference sets, which can be derived from a skew Hadamard difference set and a Paley type regular partial difference set respectively in two groups of orders v 1 and v 2 with |v 1 − v 2| = 2, is contained in these constructions. Some result on inequivalence of skew Hadamard difference sets is also given in the paper. As a consequence of Delsarte’s theorem, the dual set of skew Hadamard difference set is also a skew Hadamard difference set in an abelian group. We show that there are seven pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 35 or 37, and also at least four pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 39. Furthermore, the skew Hadamard difference sets deduced by Ree-Tits slice symplectic spreads are the dual sets of each other when q ≤ 311.   相似文献   

14.
Let G = (V,E) be a graph or digraph and r : VZ+. An r‐detachment of G is a graph H obtained by ‘splitting’ each vertex ν ∈ V into r(ν) vertices. The vertices ν1,…,νr(ν) obtained by splitting ν are called the pieces of ν in H. Every edge uν ∈ E corresponds to an edge of H connecting some piece of u to some piece of ν. Crispin Nash‐Williams 9 gave necessary and sufficient conditions for a graph to have a k‐edge‐connected r‐detachment. He also solved the version where the degrees of all the pieces are specified. In this paper, we solve the same problems for directed graphs. We also give a simple and self‐contained new proof for the undirected result. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 67–77, 2003  相似文献   

15.
In this paper we give a new series of Hadamard matrices of order 2 t . When the order is 16, Hadamard matrices obtained here belong to class II, class V or to class IV of Hall's classification [3]. By combining our matrices with the matrices belonging to class I, class II or class III obtained before, we can say that we have direct construction, namely without resorting to block designs, for all classes of Hadamard matrices of order 16.Furthermore we show that the maximal excess of Hadamard matrices of order 22t is 23t , which was proved by J. Hammer, R. Levingston and J. Seberry [4]. We believe that our matrices are inequivalent to the matrices used by the above authors. More generally, if there is an Hadamard matrix of order 4n 2 with the maximal excess 8n 3, then there exist more than one inequivalent Hadamard matrices of order 22t n 2 with the maximal excess 23t n 3 for anyt 2.  相似文献   

16.
A weighing matrix of order n and weight m2 is a square matrix M of order n with entries from {-1,0,+1} such that MMT=m2I where I is the identity matrix of order n. If M is a group matrix constructed using a group of order n, M is called a group weighing matrix. Recently, group weighing matrices were studied intensively, especially when the groups are cyclic and abelian. In this paper, we study the abelian group weighing matrices that are symmetric, i.e.MT=M. Some new examples are found. Also we obtain a few exponent bounds on abelian groups that admit symmetric group weighing matrices. In particular, we prove that there is no symmetric abelian group weighing matrices of order 2pr and weight p2 where p is a prime and p≥ 5.Communicated by: K.T. Arasu  相似文献   

17.
In this paper we show that every matrix in the class of Sylvester Hadamard matrices of order 2 k under H-equivalence can have full row and column sign spectrum, meaning that tabulating the numbers of sign interchanges along any row (or column) gives all integers 0,1,...,2 k  − 1 in some order. The construction and properties of Yates Hadamard matrices are presented and is established their equivalence with the Sylvester Hadamard matrices of the same order. Finally, is proved that every normalized Hadamard matrix has full column or row sign spectrum if and only if is H-equivalent to a Sylvester Hadamard matrix. This provides us with an efficient criterion identifying the equivalence of Sylvester Hadamard matrices.  相似文献   

18.
In answer to “Research Problem 16” in Horadam's recent book Hadamard matrices and their applications, we provide a construction for generalized Hadamard matrices whose transposes are not generalized Hadamard matrices. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 456–458, 2009  相似文献   

19.
We continue the analysis of de Launey's modification of development of designs modulo a finite groupH by the action of an abelian extension function (AEF), and of the proper higher dimensional designs which result.We extend the characterization of allAEFs from the cyclic group case to the case whereH is an arbitrary finite abelian group.We prove that ourn-dimensional designs have the form (f(j 1 j 2 ...j n )) (j i J), whereJ is a subset of cardinality |H| of an extension groupE ofH. We say these designs have a weak difference set construction.We show that two well-known constructions for orthogonal designs fit this development scheme and hence exhibit families of such Hadamard matrices, weighing matrices and orthogonal designs of orderv for which |E|=2v. In particular, we construct proper higher dimensional Hadamard matrices for all orders 4t100, and conference matrices of orderq+1 whereq is an odd prime power. We conjecture that such Hadamard matrices exist for all ordersv0 mod 4.  相似文献   

20.
We present the full classification of Hadamard 2-(31,15,7), Hadamard 2-(35, 17,8) and Menon 2-(36,15,6) designs with automorphisms of odd prime order. We also give partial classifications of such designs with automorphisms of order 2. These classifications lead to related Hadamard matrices and self-dual codes. We found 76166 Hadamard matrices of order 32 and 38332 Hadamard matrices of order 36, arising from the classified designs. Remarkably, all constructed Hadamard matrices of order 36 are Hadamard equivalent to a regular Hadamard matrix. From our constructed designs, we obtained 37352 doubly-even [72,36,12] codes, which are the best known self-dual codes of this length until now.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号