首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past two decades, bioorthogonal chemistry has become a preferred tool to achieve site‐selective modifications of proteins. However, there are only a handful of commonly applied bioorthogonal reactions and they display some limitations, such as slow rates, use of unstable or cytotoxic reagents, and side reactions. Hence, there is significant interest in expanding the bioorthogonal chemistry toolbox. In this regard, boronic acids have recently been introduced in bioorthogonal chemistry and are exploited in three different strategies: 1) boronic ester formation between a boronic acid and a 1,2‐cis diol; 2) iminoboronate formation between 2‐acetyl/formyl‐arylboronic acids and hydrazine/hydroxylamine/semicarbazide derivatives; 3) use of boronic acids as transient groups in a Suzuki–Miyaura cross‐coupling or other reactions that leave the boronyl group off the conjugation product. In this Review, we summarize progress made in the use of boronic acids in bioorthogonal chemistry to enable site‐selective labeling of proteins and compare these methods with the most commonly utilized bioorthogonal reactions.  相似文献   

2.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

3.
The development of bioorthogonal approaches for labeling of endogenous proteins under the multimolecular crowding conditions of live cells is highly desirable for the analysis and engineering of proteins without using genetic manipulation. N‐Sulfonyl pyridone (SP) is reported as a new reactive group for protein sulfonylation. The ligand‐directed SP chemistry was able to modify not only purified proteins in vitro, but also endogenous ones on the surface of and inside live cells selectively and rapidly, which allowed to convert endogenous proteins to FRET‐based biosensors in situ.  相似文献   

4.
Coupling the genetic code expansion technique with bioorthogonal reactions enables precise control over the conjugation site as well as the choice of fluorescent probes during protein labeling. However, the advantages of this strategy over bulky and rigid fluorescent proteins (FPs) remain to be fully explored. Here we applied site‐specific bioorthogonal labeling on anthrax lethal factor (LF) to visualize its membrane translocation inside live cells. In contrast to the previously reported FP tags that significantly perturbed LF’s membrane trafficking, our precisely and quantitatively labeled LF exhibited an endocytic activity comparable to wild‐type LF. This allowed time‐lapse imaging of LF’s natural translocation process from host cell membrane to cytosol, which revealed molecular details of its virulence mechanism. Our strategy is generally applicable for monitoring intracellular protein membrane translocation that is difficult to access using conventional protein labeling methodologies.  相似文献   

5.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

6.
Live cell imaging of protein‐specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole‐cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein‐specific glycoform information is reported. The proof‐of‐concept protocol developed for MUC1‐specific terminal galactose/N ‐acetylgalactosamine (Gal/GalNAc) combines affinity binding, off‐on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.  相似文献   

7.
A novel chemoenzymatic approach for simple and fast site‐specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin‐derived recognition sequence (Tub‐tag). This novel strategy enables a broad range of high‐yielding and fast chemoselective C‐terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site‐specific labeling of nanobodies, GFP, and ubiquitin.  相似文献   

8.
李劼  王杰  陈鹏 《化学学报》2012,70(13):1439-1445
生物正交化学反应正日益成为在活体内对生物大分子进行特异标记的一种有效方法. 最近涌现出的一个突出的例子是将金属钯催化的碳碳偶联反应这一在有机合成领域具有里程碑意义的反应拓展到生物大分子的标记上. 在活细胞上进行生物正交反应的一个先决条件是需要将参与这类反应的正交官能团特异地引入到目标生物大分子当中. 遗传密码子拓展技术是将多种生物正交活性基团引入到蛋白质当中的一种先进的手段; 最近发展出的基于吡咯赖氨酸氨酰合成酶和tRNA的体系能够将携带有生物正交官能团的非天然氨基酸有效地引入到原核生物、真核生物, 甚至是动物体内的蛋白质上. 在这一展望中, 我们首先介绍在生物正交反应和遗传密码子拓展这两个领域内的研究前沿与进展. 接着我们将讨论将这些新发展的研究工具, 尤其是基于钯催化的生物正交反应和基于吡咯赖氨酸氨酰合成酶的遗传密码子拓展技术, 应用于标记和修饰哺乳动物细胞蛋白质上的优势和诱人前景. 生物相兼容性更好的正交反应和更为灵活的非天然氨基酸引入技术必将有力地增强和拓宽人们在活细胞环境下特异操纵蛋白质的能力.  相似文献   

9.
The necessity for precision labeling of proteins emerged during the efforts to understand and regulate their structure and function. It demands selective attachment of tags such as affinity probes, fluorophores, and potent cytotoxins. Here, we report a method that enables single‐site labeling of a high‐frequency Lys residue in the native proteins. At first, the enabling reagent forms stabilized imines with multiple solvent‐accessible Lys residues chemoselectively. These linchpins create the opportunity to regulate the position of a second Lys‐selective electrophile connected by a spacer. Consequently, it enables the irreversible single‐site labeling of a Lys residue independent of its place in the reactivity order. The user‐friendly protocol involves a series of steps to deconvolute and address chemoselectivity, site‐selectivity, and modularity. Also, it delivers ordered immobilization and analytically pure probe‐tagged proteins. Besides, the methodology provides access to antibody‐drug conjugate (ADC), which exhibits highly selective anti‐proliferative activity towards HER‐2 expressing SKBR‐3 breast cancer cells.  相似文献   

10.
Affinity chromatography by using ligand‐immobilized bead technology is generally the first choice for target exploration of a bioactive ligand. However, when a ligand has comparatively low affinity against its target, serious difficulties will be raised in affinity‐based target detection. We report here that the use of compact molecular probes (CMP) will be advantageous in such cases; it enables the retention of moderate affinity between the ligand and its target in contrast to immobilizing the ligand on affinity beads that will cause a serious drop in affinity to preclude target detection. In the CMP strategy, a CMP containing an azide handle is used for an initial affinity‐based labeling of target, and subsequent tagging by CuAAC with a large FLAG tag will give a tagged target protein. By using the CMP strategy, we succeeded in the identification of Cassia obtusifolia MetE as a cytosolic target protein of potassium isolespedezate ( 1 ), a moderately bioactive ligand.  相似文献   

11.
Supramolecular assembly of proteins on surfaces and vesicles was investigated by site‐selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site‐selectively labeled with bisadamantane by SNAP‐tag technology. The assembly of the bisadamantane functionalized SNAP‐fusion proteins on cyclodextrin‐coated surfaces yielded stable monolayers. The binding of the fusion proteins is specific and occurs with an affinity in the order of 106 M ?1 as determined by surface plasmon resonance. Reversible micropatterns of the fusion proteins on micropatterned cyclodextrin surfaces were visualized by using fluorescence microscopy. Furthermore, the guest‐functionalized proteins could be assembled out of solution specifically onto the surface of cyclodextrin vesicles. The SNAP‐tag labeling of proteins thus allows for assembly of modified proteins through a host–guest interaction on different surfaces. This provides a new strategy in fabricating protein patterns on surfaces and takes advantage of the high labeling efficiency of the SNAP‐tag with designed supramolecular elements.  相似文献   

12.
Well‐defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein‐engineering approach was developed to provide access to hEGF constructs that carry two cysteine‐based site‐specific orthogonal labeling sites in multi‐milligram quantities. Also, a site‐selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs. The hEGF, featuring three native disulfide bonds, was expressed featuring additional sulfhydryl groups, in the form of cysteine residues, as orthogonal ligation sites at both the N and C termini. Temporary protection of the N‐terminal cysteine unit, in the form of a thiazolidine ring, avoids interference with protein folding and enables sequential labeling in conjunction with the cysteine residue at the C terminus. Based on thus‐generated hEGF constructs, sequential and site‐specific labeling with a variety of molecular probes could be demonstrated, thus leading to a biological fully functional hEGF with specifically incorporated fluorophores or protein cargo and native cellular targeting and uptake profiles. Thus, this novel strategy provides a robust entry to high‐yielding access of hEGF and rapid and easy site‐specific and multifunctional dual labeling of this growth factor.  相似文献   

13.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   

14.
The use of bioorthogonal probes that display fluorogenic or phosphorogenic properties is advantageous to the labeling and imaging of biomolecules in live cells and organisms. Herein we present the design of three iridium(III) complexes containing a nitrone moiety as novel phosphorogenic bioorthogonal probes. These probes were non‐emissive owing to isomerization of the C=N group but showed significant emission enhancement upon cycloaddition reaction with strained cyclooctynes. Interestingly, the connection of the nitrone ligand to the cationic iridium(III) center led to accelerated reaction kinetics. These nitrone complexes were also identified as phosphorogenic bioorthogonal labels and imaging reagents for cyclooctyne‐modified proteins. These findings contribute to the development of phosphorogenic bioorthogonal probes and imaging reagents.  相似文献   

15.
Structural proteomics refers to large‐scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass‐spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high‐order structure. Fluorine, well‐known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine‐containing reagents that can be applied in structural proteomics. We organize their applications around four MS‐based techniques: a) affinity labeling, b) activity‐based protein profiling (ABPP), c) protein footprinting, and d) protein cross‐linking. Our aim is to provide an overview of the research, development, and application of fluorine‐containing reagents in protein structural studies.  相似文献   

16.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

17.
We present the development of new affinity probes for protein labeling based on an epoxide reactive group. Systematic screening revealed that an epoxide functionality possesses the special combination of stability and reactivity which renders it stable toward proteins in solution but reactive on the protein surface outside the active site (proximity-induced reactivity). Highly efficient and selective labeling of purified HCA II (human carbonic anhydrase II) was achieved. For instance, 2 equiv of epoxide probe 9 was sufficient for nearly quantitative labeling of HCA II (>90% yield, 20 h reaction time). MS analysis of the labeled protein revealed that 1 equiv of the probe was attached and that labeling occurred at a single residue (His 64) outside the active site. Importantly, epoxide probe 9 selectively labeled HCA II both in simple protein mixtures and in cellular extracts. In addition to the chemical insight and its relevance to many epoxide-containing natural products, this study generated a promising lead in the development of new affinity probes for protein labeling.  相似文献   

18.
Super‐resolution microscopy (SRM) greatly benefits from the ability to install small photostable fluorescent labels into proteins. Genetic code expansion (GCE) technology addresses this demand, allowing the introduction of small labeling sites, in the form of uniquely reactive noncanonical amino acids (ncAAs), at any residue in a target protein. However, low incorporation efficiency of ncAAs and high background fluorescence limit its current SRM applications. Redirecting the subcellular localization of the pyrrolysine‐based GCE system for click chemistry, combined with DNA‐PAINT microscopy, enables the visualization of even low‐abundance proteins inside mammalian cells. This approach links a versatile, biocompatible, and potentially unbleachable labeling method with residue‐specific precision. Moreover, our reengineered GCE system eliminates untargeted background fluorescence and substantially boosts the expression yield, which is of general interest for enhanced protein engineering in eukaryotes using GCE.  相似文献   

19.
The pre‐targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions—the condensation reaction of aromatic nitriles and aminothiols and the inverse‐electron demand Diels–Alder reaction between tetrazine and trans‐cyclooctene (TCO)—to develop a novel strategy for pre‐targeted imaging of the activity of proteases. The substrate probe ( TCO‐C‐SNAT4 ) can be selectively activated by an enzyme target (e.g. caspase‐3/7), which triggers macrocyclization and subsequent in situ self‐assembly into nanoaggregates retained at the target site. The tetrazine‐imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO‐C‐SNAT4 can be repeatedly injected to generate and accumulate more TCO‐nanoaggregates for click labeling.  相似文献   

20.
A method was developed for the direct functionalization of metalloporphyrins at the methine protons (meso positions) to yield asymmetric alkynylated derivatives by using gold catalysis and hypervalent iodine reagents. This single‐step procedure was applied to b‐type heme and the product was incorporated into a gas‐sensor heme protein. The terminal alkyne allows fluorophore labeling through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC). Hemoproteins with this type of engineered cofactor have several potential applications in labeling and imaging technologies. Additionally, the alkyne provides a handle for modulating porphyrin electron density, which affects cofactor redox potential and ligand affinity. This method will be helpful for investigating the chemistry of natural heme proteins and for designing artificial variants with altered properties and reactivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号