首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilayer films consisting of carboxymethylcellulose (CMC) and ferrocene‐modified poly(ethyleneimine) (Fc‐PEI) or poly(allylamine hydrochloride) (Fc‐PAH) were successfully prepared on a gold electrode to examine their redox properties. The redox current of (Fc‐PEI/CMC)n film‐coated electrodes increased with the number of layers, while the (Fc‐PAH/CMC)n film‐coated electrodes exhibited increased response only for the first eight bilayers. The (Fc‐PEI/CMC)n and (Fc‐PAH/CMC)n films deposited on the surface of Fc‐free multilayer film‐coated electrodes also showed a redox response. The (PEI/CMC)5 film‐coated electrode showed redox responses in Fc‐PEI and Fc‐PAH solutions, confirming the uptake of the Fc‐polymers in the inner film. In contrast, the uptake of the Fc‐polymers in the (PAH/CMC)5 film was severely suppressed, suggesting that different permeability of (PEI/CMC)5 and (PAH/CMC)5 films.  相似文献   

2.
《Electroanalysis》2017,29(5):1443-1450
In this study, inorganic/organic composites containing poly (N‐isopropylacrylamide) coated core‐shell SiO2 microspheres were prepared via surface‐initiated atom transfer radical polymerization (ATRP). The thermal responsive polymer, N‐isopropylacrylamide was treated with methanol, water and CuBr/CuBr2/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) at room temperature to form PNIPAM@SiO2 microspheres. The as‐prepared PNIPAM@SiO2 microspheres were characterized by FT‐IR, TGA, XPS, SEM, TEM analyses. Hemoglobin (Hb) was immobilized onto the surfaces of PNIPAM@SiO2 microspheres via hydrophobic and π‐π stacking interactions. The as‐prepared Hb/PNIPAM@SiO2 electrode exhibits well‐defined redox peak at a formal potential of −0.38 V, validating the direct electrochemistry of Hb. The Hb immobilized composite film retained its bioelectroactivity without any significant loss of catalytic activity. The modified electrode detects H2O2 over a wide linear concentration range (0.1 μM to 333 μM) with a detection limit of 0.07 μM. This modified electrode also successfully detects H2O2 from food and disinfectant samples with appreciable recovery values, validating its practicality. We believe that PNIPAM@SiO2 composite has great potential to be used in the detection of H2O2 and development of other enzyme based biosensors.  相似文献   

3.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

4.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

5.
For the first time, electroactive poly(melamine) film has been prepared and evaluated to function as a matrix to immobilize “spherical” copper nanoclusters and also as a ligand to form a copper complex with enhanced electrocatalytic activity. This is a simple two‐step process that involves first polymerization of melamine on a screen‐printed carbon electrode followed by electrodeposition of copper without using harmful and environmentally toxic chemicals. It is remarkable that this electrode can electrocatalytically reduce H2O2 at approximately ?0.2 V versus Ag/AgCl in pH 7 PBS and possesses superior stability in amperometric analysis of H2O2 under the continuous wall‐jet flow of 1 mM of H2O2 for more than 5 h. Most importantly, we have demonstrated that the as‐prepared copper‐poly(melamine)‐modified electrode can solve the setbacks of copper‐based H2O2 sensors reported so far. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1639–1646  相似文献   

6.
In this paper, self‐assembled Prussian blue nanoparticles (PBNPs) on carbon ceramic electrode (CCE) were developed as a high sensitive hydrogen peroxide (H2O2) electrochemical sensor. The PBNPs film was prepared by a simple dipping method. The morphology of the PBNPs‐modified CCE was characterized by scanning electron microscopy (SEM). The self‐assembled PB film exhibited sufficient mechanical, electrochemical stability and high sensitivity in compare with other PB based H2O2 sensors. The sensor showed a good linear response for H2O2 over the concentration range 1 μM–0.26 mM with a detection limit of ca. 0.7 μM (S/N=3), and sensitivity of 754.6 mA M?1 cm?2. This work demonstrates the feasibility of self‐assembled PBNPs‐modified CCE for practical sensing applications.  相似文献   

7.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

8.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

9.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

10.
《Electroanalysis》2018,30(9):1956-1964
We present a simple and efficient method for the preparation of hemin‐modified SnO2 films on low cost, flexible, conducting ITO‐PET substrates to enable the development of a sensitive electrochemical sensor for the determination of H2O2. Using a hydrothermal processing method meant that the SnO2 films can be prepared at low temperatures, compatible with the PET substrate. The properties of the electrodes enable a high hemin loading to be achieved in a stable and functional way, allowing the direct reduction and oxidation of the immobilized hemin and maintaining its high electrocatalytic activity in the reduction of H2O2 on the surface. The results showed a sensitive response linearly proportional to the concentration of H2O2 in the range 1.5 to 90 μM.  相似文献   

11.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

12.
Silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film modified glassy carbon electrode was prepared by means of electrostatically trapping the silicomolybdate anion in the cationic film. The PLL‐GA‐SiMo film was stable and the charge transport through the film was fast. The modified electrode shows excellent electrocatalytic activity towards hydrogen peroxide reduction with significant reduction of overpotential, however, not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL‐GA‐SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents.  相似文献   

13.
Urchin‐like Ag nanowires were prepared by reacting AgNO3(aq) with Cu metal in the presence of cetyltrimethylammonium chloride and HNO3(aq) on a screen printed carbon electrode at room temperature. The diameters of the nanowires were about 100 nm, while the lengths were up to 10 μm. Cyclic voltammetric experiments using the Ag nanowires as the working electrode showed electrocatalytic H2O2 reduction. The electrode exhibited a high sensitivity of 4705 μA mM‐1 mg‐1 cm‐2 from 50 μM to 10.35 mM and a measurable detection limit of 10 μM in amperometric detection. This is the first report on Ag NWs for non‐enzymatic H2O2 sensing.  相似文献   

14.
Electrically conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) film doped with silicomolybdate (SiMo12O404? or SiMo12) was synthesized by electrochemical polymerization. The synthesized film is capable of fast charge propagation during redox reactions in strong acid medium 0.2 M H2SO4 solution. The modified electrode was used towards reduction of bromate and successfully employed as an amperometric sensor for bromate and also above modified electrode was investigated for ascorbic acid oxidation.  相似文献   

15.
《Electroanalysis》2006,18(3):259-266
In this paper, a new strategy for constructing a mediator‐type amperometric hydrogen peroxide (H2O2) microbiosensor was described. An electropolymerized thionine film (PTH) was deposited directly onto a gold electrode surface. The resulting redox film was extremely thin, adhered well onto a substrate (electrode), and had a highly cross‐linked network structure. Consequently, horseradish peroxidase (HRP) was successfully immobilized on nanometer‐sized Au colloids, which were supported by thiol‐tailed groups of 11‐mercaptoundecanoic acid (11‐MUA) monolayer covalently bound onto PTH film. With the aid of the PTH mediator, HRP‐labeled Au colloids microbiosensor displayed excellent electrocatalytical response to the reduction of H2O2. This matrix showed a biocompatible microenvironment for retaining the native activity of the covalent HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H2O2. The proposed H2O2 microbiosensor exhibited linear range of 3.5 μM–0.7 mM with a detection limit of 0.05 μM (S/N=3). The response showed a Michaelis‐Menten behavior at larger H2O2 concentrations. The KMapp value for the biosensors based on 24 nm Au colloids was found to be 47 μM, which demonstrated that HRP immobilized on Au colloids exhibited a high affinity to H2O2 with no loss of enzymatic activity. This microbiosensor possessed good analytical performance and storage stability.  相似文献   

16.
《Electroanalysis》2017,29(9):2044-2052
This paper demonstrated using polyethylenimine (PEI)‐functionalized graphene (Gr) incorporating tin oxide (SnO2) hybrid nanocomposite as a platform for nonenzymatic H2O2 electrochemical sensor. The results of UV‐vis spectroscopy and X‐ray diffraction (XRD) confirmed the simultaneous formation of tin oxide (SnO2) nanocomposite and reduction of graphene oxide (GO). Transmission electron microscopy (TEM) images showed a uniform distribution of nanometer‐sized tin oxide nanoparticles on the grapheme sheets, which could be achieved using stannous chloride (SnCl2) complex instead of tin oxide as precursor. The electrochemical measurements, including cyclic voltammetry (CV) and amperometric performance (I‐t), showed that the PEI‐functionalized Gr supported SnO2 (SnO2‐PEI‐Gr) exhibited an excellent electrocatalytic activity toward the H2O2. The corresponding calibration curve of the current response showed a linear detection range of 9×10−6∼1.64×10−3 mol L−1, while the limit of detection was estimated to be 1×10−6 mol L−1. Electrochemical studies indicated that SnO2 and functionalized Gr worked synergistically for the detection of H2O2.  相似文献   

17.
A silver nanograins (AgNGs) incorporated poly[3,4‐ethylenedioxythiophene] (PEDOT) modified electrode was prepared by a simple electrochemical method without using any stabilizer or reducing agent. The surface morphology and thickness of the resulting modified electrode was characterized by using AFM. It was found that the size of the silver particles in the PEDOT modified electrode was smaller than that in the bare electrode. AFM studies also revealed that AgNGs were uniformly distributed in the PEDOT modified electrode and the thickness of the film was found to be 35 nm. The AgNGs incorporated PEDOT modified electrode exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide without an enzyme or mediator immobilized in the electrode. It has shown good amperometric response to hydrogen peroxide (H2O2) with a detection limit of 7 μM and a response time of 5 s.  相似文献   

18.
A new convenient strategy to fabricate a third‐generation hydrogen peroxide biosensor was described. The screen‐printed carbon electrode (SPCE) was first modified with a layer of 4‐nitrophenyl assembled from the 4‐nitroaniline diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were converted to amines followed by crosslinking to the horseradish peroxidase (HRP) by glutaraldehyde. The redox chemistry of the active center of the HRP was observed and the HRP‐modified electrode displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. H2O2 was determined in a linear range from 5.0 μM to 50.0 μM, with a detection limit of 1.0 μM. Furthermore, the biosensor exhibited fast amperometric response, good reproducibility and long‐term stability.  相似文献   

19.
A bioelectrochemical platform has been constructed for the direct electron transfer and biosensing purposes of microperoxidase‐11 (MP‐11) immobilized on the chitosan dispersed multilayer graphene nanocomposite. The immobilized MP‐11 at the modified gold electrode displays a well‐defined and quasireversible redox peaks, with a formal potential of ?0.38 V/SCE in a buffer solution (pH 7.0). MP‐11 absorbed on the electrode surface exhibits high electrocatalytic activity toward the reduction of both oxygen and hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2.5 to 135 μM. These results indicate the graphene modified electrode might be used as a third generation biosensor for H2O2 detection.  相似文献   

20.
3,4‐Dihydroxy‐L ‐phenylalanine (dopa) and 2‐(3,4‐dihydroxyphenyl)ethylamine (dopamine) were investigated as reducing agent and stabilizer for synthesis of gold nanoparticles (AuNPs) by one‐pot heating of a solution of HAuCl4/dopa or dopamine. AuNPs with different sizes were obtained by controlling the mass ratios of HAuCl4/dopa or dopamine. The formation mechanism for AuNPs was also proposed. Immobilization of horseradish peroxidase (HRP) and promotion of its electron transfer by polydopa film were investigated for preparation of H2O2 biosensor. Alkaline dopa solution was dropped onto a gold electrode for the formation of polydopa film. HRP was immobilized on the polydopa film through interactions between heme centre of HRP and the amine and carboxyl groups in polydopa. The AuNPs embedded in the polydopa film improved the electron transfer efficiency. These two factors allowed successful development of a H2O2 sensor with HRP@polydopa‐AuNPs electrode. Due to its biocompatibility, the polydopa‐AuNPs film provided good retention of enzyme activity and long‐term stability of the sensor. A rapid catalytic response (3 s) and a linear range from 0.006 to 5.0 mmol L?1 were obtained for H2O2. This facile preparation strategy can be extended to other enzyme‐based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号