首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the development of nanotechnology, there is a growing demand for advanced electronics based on functional nanomaterials. In this respect, owing to their unique properties, conducting polymers (CP) synthesized in the form of one‐dimensional (1D) nanostructures are of particular interest. In this feature paper, we first report one of the most powerful techniques, the hard templating synthesis, for elaborating a large number of uniform 1D CP nanotubes or nanowires with precise control over lengths and diameters. Then, recent advances in the preparation, through electrochemical template synthesis, of various multi‐segmented nanowires containing a combination of metallic and polymeric components are discussed. Hybrid metal‐CP nanowires are promising high tech materials as they exhibit enhanced performances compared to their bulk counterparts and are of direct interest for developing novel multifunctional systems for a wide range of applications. Finally, some future directions for research in the area of multi‐segmented nanowires are proposed.

  相似文献   


2.
We report for the first time the preparation of single polypyrrole (PPy) molecule chains using a “metal‐organic framework” with 1 nm channels as a template. The obtained one‐dimensional (1‐D) PPy has highly structure order and excellent conductivity, which has improved by as much as five orders of magnitude in comparison with that of 2‐D PPy.

  相似文献   


3.
Tailoring metal oxide nanostructures with mesoporous architectures is vital to improve their electrocatalytic performance. Herein, we demonstrate the synthesis of 2D mesoporous Co3O4 (meso‐Co3O4) nanobundles with uniform shape and size by employing a hard‐template method. In this study, the incipient wetness impregnation technique has been chosen for loading metal precursor into the silica hard template (SBA‐15). The results reveal that the concentration of a saturated precursor solution plays a vital role in mesostructured ordering, as well as the size and shape of the final meso‐Co3O4 product. The optimized precursor concentration allows us to synthesize ordered meso‐Co3O4 with four to seven nanowires in each particle. The meso‐Co3O4 structure exhibits excellent electrocatalytic activity for both glucose and water oxidation reactions.  相似文献   

4.
A series of highly ordered mesoporous carbonaceous frameworks with diverse symmetries have been successfully synthesized by using phenolic resols as a carbon precursor and mixed amphiphilic surfactants of poly(ethylene oxide)‐b‐poly(propylene oxide)‐b‐poly(ethylene oxide) (PEO–PPO–PEO) and reverse PPO–PEO–PPO as templates by the strategy of evaporation‐induced organic–organic self‐assembly (EISA). The transformation of the ordered mesostructures from face‐centered (Fd m) to body‐centered cubic (Im m), then 2D hexagonal (P6mm), and eventually to cubic bicontinuous (Ia d) symmetry has been achieved by simply adjusting the ratio of triblock copolymers to resol precursor and the relative content of PEO–PPO–PEO copolymer F127, as confirmed by small‐angle X‐ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen‐sorption measurements. The blends of block copolymers can interact with resol precursors and tend to self‐assemble into cross‐linking micellar structures during the solvent‐evaporation process, which provides a suitable template for the construction of mesostructures. The assembly force comes from the hydrogen‐bonding interactions between organic mixed micelles and the resol‐precursor matrix. The BET surface area for the mesoporous carbonaceous samples calcined at 600 °C under nitrogen atmosphere is around 600 m2 g?1, and the pore size can be adjusted from 2.8 to 5.4 nm. An understanding of the organic–organic self‐assembly behavior in the mixed amphiphilic surfactant system would pave the way for the synthesis of mesoporous materials with controllable structures.  相似文献   

5.
In this paper, a novel synthesis of polyethylene glycol (PEG)‐modified polypyrrole (PPy) nanomaterials is demonstrated by combining reversible addition‐fragmentation chain transfer polymerization and oxidative polymerization. Dye molecules with a heat‐labile linker are used as a model drug and covalently anchored onto the PEGlated PPy nanomaterials via “click chemistry.” The strong absorption of such PPy nanomaterials in the near‐infrared region endows the system excellent photothermal effect, which can be used not only as efficient photothermal agents for photothermal therapy but also good controllers of a drug‐release system by retro D–A reaction.

  相似文献   


6.
2,3,3‐Trimethylindolenine and 5‐chloro‐2,3,3‐trimethylindolenine were converted into β‐diformyl compounds by the action of the Vilsmeier reagent at 50°C. The dialdehydes reacted with various arylhydrazines and 2‐pyridylhydrazine to produce mono‐hydrazones as mixtures of cis and trans isomers. Heating the hydrazones in refluxing ethanol produced 3,3‐dimethyl‐2‐(1‐aryl‐1H‐pyrazol‐4‐yl)‐3H‐indoles in excellent yields. Reaction of the β‐diformyl compounds with hydrazine itself led directly to 3,3‐dimethyl‐2‐(pyrazol‐4‐yl)‐3H‐indoles.  相似文献   

7.
A facile microwave method (MW) is described that accomplishes alignment and decoration of noble metals on carbon nanotubes (CNT) wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes such as single‐ and multi‐walled, and Buckminsterfullerene (C‐60) are well dispersed using the sodium salt of CMC under sonication. Addition of respective noble metal salts then generates noble metal‐decorated CNT composites at room temperature. However, aligned nanocomposites of CNTs could only be generated by exposing the above nanocomposites to MW irradiation. The CNT composites are characterized using scanning electron microscopy, energy dispersive X‐ray analysis, X‐ray mapping, transmission electron microscopy, and UV‐visible spectroscopy. The general preparative procedure is versatile and provides a simple route to manufacturing useful metal‐coated CNT nanocomposites.

  相似文献   


8.
Hybrid rod‐rod diblock copolymers, poly(γ‐benzyl L‐glutamate)‐poly(4‐cyano‐benzoic acid 2‐isopropyl‐5‐methyl‐cyclohexyl ester) (PBLG‐PPI), with determined chirality are facilely synthesized through sequential copolymerization of γ‐benzyl‐L‐glutamate N‐carboxyanhydride (BLG‐NCA) and phenyl isocyanide monomers bearing chiral menthyl pendants using a Ni(cod)(bpy) complex as the catalyst in one‐pot. Circular dichroism and absorption spectra reveal that each block of the block copolymers possesses a stable helical conformation with controlled helicity in solution due to the induction of chiral pendants. The two diastereomeric polymers self‐assemble into helical nanofibrils with opposite handedness due to the different chiral induction of the L‐ and D‐menthyl pendants, confirmed by transmission electron micro­scopy (TEM). Deprotection of the benzyl groups of the PBLG segment affords biocompatible amphiphilic diblock copolymers, poly(L‐glutamic acid)‐poly(4‐cyano‐benzoic acid 2‐isopropyl‐5‐methyl‐cyclohexyl ester) (PLGA‐PPI), that can self‐assemble into well‐defined micelles by cosolvent induced aggregation. Very interestingly, a chiral rhodamine chromophores RhB(D) can be selectively encapsulated into the chiral polymeric micelles, which is efficiently internalized into living cells when directly monitored with a confocal microscope. This contribution will be useful for developing novel rod‐rod biocompatible hybrid block copolymers with a controlled helicity, and may also provide unique chiral materials for potential bio‐medical applications.

  相似文献   


9.
A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor‐infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen‐adsorption–desorption isotherm, and small‐angle X‐ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft‐templating methods, can be prepared. This study has overcome the composition variation limitations of the soft‐templating method.  相似文献   

10.
Enzyme‐loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer‐by‐layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.

  相似文献   


11.
Hollow self‐doped polyaniline (SPAN) micro/nanostructures, such as hollow microspheres, aligned pearls, and nanotubes, have been synthesized by a one‐step chemical oxidation copolymerization of aniline (AN) and m‐aminobenzenesulfonic acid (SAN) using ammonium peroxydisulfate (APS) as the oxidant in aqueous solution. The process is facile and free of any template, surfactant, and external dopants. The shapes and sizes of the hollow SPAN micro/nanostructures can be controlled by adjusting the synthetic parameters, such as the molar ratios of AN and SAN, the concentrations of monomers, and the molar ratios of the monomer and APS. The formation of hollow SPAN micro/nanostructures is possibly related to the self‐assembly of SPAN oligomers at the early stage of the copolymerization reaction. The molecular structures of the SPAN micro/nanostructures were determined by FT‐IR spectroscopy, which reveales that SO groups are bonded to the aromatic rings in SPAN chains.

  相似文献   


12.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


13.
A linear variable differential transformer (LVDT) was employed to evaluate CO2‐polymer plasticization. Preliminary results on polystyrene‐block‐polybutadiene‐block‐polystyrene (SBS) elastomer are presented. At 22 °C under CO2 pressure, SBS undergoes compression due to hydrostatic pressure. However, sample expansion occurs upon depressurization. At 45 °C, SBS undergoes swelling of 0.7% due to CO2 plasticization, while no post‐pressurization expansion is observed. The contrasting result is explained by change in PS domain mobility and discontinuity in the density‐pressure relationship.

Linear displacement of SBS as a function of time at 56 and 134 bar CO2.  相似文献   


14.
Summary: The addition of spermidine (SPD) into turbulent flow as a condensing agent showed the abrupt change of turbulent drag reducing (DR) efficiency of λ‐DNA in turbulent flow for the first time. The resultant asymptote DR efficiency explains the origin of those changes, which can be conclusively verified via the electrophoresis experiment. Despite the different fluid conditions, with and without condensing agent, all λ‐DNA molecules possessed the same half‐cut dimension, implying that the discrete change of DNA conformation can dramatically alter the flow characteristics.

Coil‐globule transition of DNA by spermidine.  相似文献   


15.
A route has been developed to disperse metal‐containing phthalocyanine dyes in a non‐polar medium based on amphiphilic block copolymer micelles of poly[styrene‐block‐(4‐vinylpyridine)] (PS‐b‐P4VP) and poly[styrene‐block‐(acrylic acid)] (PS‐b‐PAA) copolymers. Polar P4VP and PAA efficiently encapsulate cobalt(II ), manganese(II ), and nickel(II ) phthalocyanine dyes by axial coordination of nitrogen and µ‐oxo bridged dimerization with the transition metals, respectively. Good dispersion of the dyes is confirmed by the linear enhancement of Q‐bands in UV–vis absorption spectra with dye concentration. A thin monolayered PS‐b‐P4VP micelle film that contained a nickel(II ) phthalocyanine dye which efficiently adsorbs a laser beam on a localized area to generate a local heat higher than the glass transition temperatures of both blocks. One‐dimensional laser writing on the dye‐containing film allows the fabrication of a few submicrometer wide line patterns in which the self‐assembled nanostructure of the block copolymer is modified by the directional heat arising from laser scanning.

  相似文献   


16.
Various 4‐amino‐2,3‐dihydro‐4H‐triazoles with aromatic, aliphatic and heterocyclic substituents at the C(5) position were synthesized from corresponding esters and thiocarbohydrazide. This method allows the synthesis these heterocycles in a short time and at reduced expenses.  相似文献   

17.
Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33‐residue of calmodulin protein from Paramecium tetraurelia. The self‐assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium.

  相似文献   


18.
Large scale of well‐ordered macroporous π‐conjugated polymer monoliths have been successfully prepared through a new approach using micrometer‐sized naphthalene crystals as templates. The macroporous monoliths of poly(p‐phenylenevinylene) (PPV) and poly(p‐phenyleneethynylene) (PPE) grew along the unidirectional freezing direction inside the template naphthalene crystals which lead to the formation of controlling morphologies and homogeneous diameters. The polymer monoliths show straight and lamella macroporous structures. The diameters of pores and the thickness of pore walls can be controlled by tuning the freezing temperature.

  相似文献   


19.
Guided by nature : A flexible and epimerization‐free approach for the asymmetric syntheses of melleumin A and four analogues of melleumins A and B was developed, which allowed confirming the stereochemistry at C‐4 of melleumin A, and revealed that the unnatural 4‐epi‐melleumin B possesses a modest inhibitory activity on Wnt signaling.

  相似文献   


20.
Sensitive functional groups such as COR, CHO, or CH2OH can be present in benzylic indium reagents prepared by the direct insertion of indium in the presence of LiCl. These reagents undergo palladium‐catalyzed cross‐coupling reactions in the presence of a protic cosolvent after activation with iPrMgCl⋅LiCl (see scheme). Remarkable chemoselectivities are achieved by using various electrophiles containing NH or OH groups.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号