首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A parallel adaptive refinement algorithm for three‐dimensional unstructured grids is presented. The algorithm is based on an hierarchical h‐refinement/derefinement scheme for tetrahedral elements.The algorithm has been fully parallelized for shared‐memory platforms via a domain decomposition of the mesh at the algebraic level. The effectiveness of the procedure is demonstrated with applications which involve unsteady compressible fluid flow. A parallel speedup study of the algorithm also is included. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

2.
For three‐dimensional finite element analysis of transient fluid flow with free‐surface, a new marker surface method is proposed, in which the fluid flow is represented by the marker surface composed of marker elements instead of marker particles used in the marker particle method. This also involves an adaptive grid that is created under a new criterion of element categorization of filling states and the locations in the total region at each time step. The marker surface is used in order to represent the free‐surface accurately, as well as to decrease the memory and computation time, and to effectively display the predicted three‐dimensional free‐surface. By using the adaptive grid in which the elements, finer than those in internal and external regions, are distributed in the surface region through refinement and coarsening procedures, the analysis of three‐dimensional transient fluid flow with free‐surface is achieved more efficiently. Through three‐dimensional analysis of two kinds of problems using several grids, the efficiency of the proposed marker surface method and the adaptive grid are verified. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
A complete set of equivalence conditions, relating the mass‐lumped Bubnov–Galerkin finite element (FE) scheme for Lagrangian linear elements to node‐centred finite volume (FV) schemes, is derived for the first time for conservation laws in a three‐dimensional cylindrical reference. Equivalence conditions are used to devise a class of FV schemes, in which all grid‐dependent quantities are defined in terms of FE integrals. Moreover, all relevant differential operators in the FV framework are consistent with their FE counterparts, thus opening the way to the development of consistent hybrid FV/FE schemes for conservation laws in a three‐dimensional cylindrical coordinate system. The two‐dimensional schemes for the polar and the axisymmetrical cases are also explicitly derived. Numerical experiments for compressible unsteady flows, including expanding and converging shock problems and the interaction of a converging shock waves with obstacles, are carried out using the new approach. The results agree fairly well with one‐dimensional simulations and simplified models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional finite element method for incompressible multiphase flows with capillary interfaces is developed based on a (formally) second‐order projection scheme. The discretization is on a fixed (Eulerian) reference grid with an edge‐based local h‐refinement in the neighbourhood of the interfaces. The fluid phases are identified and advected using the level‐set function. The reference grid is then temporarily reconnected around the interface to maintain optimal interpolations accounting for the singularities of the primary variables. Using a time splitting procedure, the convection substep is integrated with an explicit scheme. The remaining generalized Stokes problem is solved by means of a pressure‐stabilized projection. This method is simple and efficient, as demonstrated by a wide range of difficult free‐surface validation problems, considered in the paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

7.
A weighted residual collocation methodology for simulating two‐dimensional shear‐driven and natural convection flows has been presented. Using a dyadic mesh refinement, the methodology generates a basis and a multiresolution scheme to approximate a fluid flow. To extend the benefits of the dyadic mesh refinement approach to the field of computational fluid dynamics, this article has studied an iterative interpolation scheme for the construction and differentiation of a basis function in a two‐dimensional mesh that is a finite collection of rectangular elements. We have verified that, on a given mesh, the discretization error is controlled by the order of the basis function. The potential of this novel technique has been demonstrated with some representative examples of the Poisson equation. We have also verified the technique with a dynamical core of a two‐dimensional flow in primitive variables. An excellent result has been observed—on resolving a shear layer and on the conservation of the potential and the kinetic energies—with respect to previously reported benchmark simulations. In particular, the shear‐driven simulation at CFL = 2.5 (Courant–Friedrichs–Lewy) and (Reynolds number) exhibits a linear speed up of CPU time with an increase of the time step, Δt. For the natural convection flow, the conversion of the potential energy to the kinetic energy and the conservation of total energy is resolved by the proposed method. The computed streamlines and the velocity fields have been demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust.  相似文献   

9.
The present paper is the lead article in a three‐part series on anisotropic mesh adaptation and its applications to structured and unstructured meshes. A flexible approach is proposed and tested on two‐dimensional, inviscid and viscous, finite volume and finite element flow solvers, over a wide range of speeds. The directional properties of an interpolation‐based error estimate, extracted from the Hessian of the solution, are used to control the size and orientation of mesh edges. The approach is encapsulated into an edge‐based anisotropic mesh optimization methodology (MOM), which uses a judicious sequence of four local operations: refinement, coarsening, edge swapping and point movement, to equi‐distribute the error estimate along all edges, without any recourse to remeshing. The mesh adaptation convergence of the MOM loop is carefully studied for a wide variety of test cases. The mesh optimization generic coupling of MOM with finite volume and finite element flow solvers is shown to yield the same final mesh no matter what the starting point is. It is also shown that on such optimized meshes, the need for computational fluid dynamics (CFD) stabilization artifices, such as upwinding or artificial viscosity, are drastically reduced, if not altogether eliminated, in most well‐posed formulations. These two conclusions can be considered significant steps towards mesh‐independent and solver‐independent CFD. The structure of the three‐part series is thus, 1, general principles; 2, methodology and applications to structured and unstructured grids; 3, applications to three‐dimensional flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Two‐level low‐order finite element approximations are considered for the inhomogeneous Stokes equations. The elements introduced are attractive because of their simplicity and computational efficiency. In this paper, the stability of a Q1(h)–Q1(2h) approximation is analysed for general geometries. Using the macroelement technique, we prove the stability condition for both two‐ and three‐dimensional problems. As a result, optimal rates of convergence are found for the velocity and pressure approximations. Numerical results for three test problems are presented. We observe that for the computed examples, the accuracy of the two‐level bilinear approximation is compared favourably with some standard finite elements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one and two‐dimensional convection–diffusion type differential equations with constant and variable convection coefficients. In the one‐dimensional case, the numerical scheme developed uses three points. For the two‐dimensional case, even though nine points are used, the successive line overrelaxation approach with alternating direction implicit procedure enables us to deal with tri‐diagonal systems. The methods are applied on a number of linear and non‐linear problems, mostly with large first derivative terms, in particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems, compared with the available results in the literature. Application of an exponential scheme with a non‐uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The implementation of an adaptive mesh‐embedding (h‐refinement) scheme using unstructured grid in two‐dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an‐isotropic refinement in the interfacial cells between refined and non‐refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high‐speed driven cavity flow. The results show an improved flow resolution as compared with that of un‐adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near‐continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non‐uniform density variations throughout the flow field. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A novel numerical scheme for slug capturing in pipes using a 1‐dimensional transient hyperbolic 5‐equation 2‐fluid model is presented. Previous work has shown that 1‐dimensional 2‐fluid models are able to capture slug flow automatically. In this work, a similar approach is further developed using a new numerical scheme, applied to a hyperbolic 5‐equation 2‐fluid model. Starting from a finite volume discretisation of a 5‐equation 2‐fluid hyperbolic model and adding appropriate closure relations, a second‐order code is implemented and applied to air‐water flows in horizontal pipes, simulating the 2‐phase to 1‐phase flow process. The code is evaluated in some common standard test cases. A slug capturing application is also discussed. We show, in an air/water horizontal pipe, slug initiation, growth, and development. Moreover, a grid refinement analysis is performed showing that the method is grid independent and we show the code capability to take into account eventual surface tension effects, through the instantaneous pressure relaxation process. Finally, a prediction of flow regime transitions is shown and compared with a well‐known theoretical flow pattern map in addition to a preliminary comparison of computed slug characteristics against well‐known empirical correlations.  相似文献   

16.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A three‐dimensional extended finite element method is presented to simulate Stokes flow in complex geometries with internal moving parts. Instead of re‐meshing the flow domain, the kinematics of the internal objects are imposed on the conservation equations using a constraint, implemented with a Lagrangian multiplier. To capture discontinuities of field variables, such as pressure and velocity, on the intersected elements, XFEM is used. To validate our method, it is first applied to a relatively simple problem, that is, the flow around a cylinder in a channel. The results are verified by comparing with a boundary‐fitted solution. After validation of the model and its implementation, the three‐dimensional flow in a twin‐screw extruder is simulated and the results are compared with experimental data from literature. XFEM shows very good accuracy for complex geometries with internal moving parts and narrow gap regions where the shear rate is orders of magnitude higher than in other regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable‐density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded‐boundary (or cut‐cell) method for complex geometry with block‐structured adaptive mesh refinement (AMR) while maintaining conservation and second‐order accuracy. The accurate simulation of variable‐density fluids necessitates special care in formulating projection methods. This variable‐density formulation is well known for incompressible flows in unit‐aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second‐order‐accurate projection method with high‐order‐accurate Godunov finite‐differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite‐volume AMR discretizations are based on two‐way flux matching at refinement boundaries to obtain a conservative method that is second‐order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint‐block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two‐ and three‐dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we develop a finite element model for solving the convection–diffusion‐reaction equation in two dimensions with an aim to enhance the scheme stability without compromising consistency. Reducing errors of false diffusion type is achieved by adding an artificial term to get rid of three leading mixed derivative terms in the Petrov–Galerkin formulation. The finite element model of the Petrov–Galerkin type, while maintaining convective stability, is modified to suppress oscillations about the sharp layer by employing the M‐matrix theory. To validate this monotonic model, we consider test problems which are amenable to analytic solutions. Good agreement is obtained with both one‐ and two‐dimensional problems, thus validating the method. Other problems suitable for benchmarking the proposed model are also investigated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Aircraft holding around busy airports may be requested to sustain as much as 45 min of icing before landing or being diverted to another airport. In this paper, a three‐dimensional mesh deformation scheme, based on a structural frame analogy, is proposed for the numerical simulation of ice accretion during extended exposure to adverse weather conditions. The goal is to provide an approach that is robust and efficient enough to delay or altogether avoid re‐meshing while preserving (enforcing) nearly orthogonal elements at the highly distorted ice surface. Robustness is achieved by suitably modifying the axial and torsional stiffness components of the frame elements in order to handle large and irregular grid displacements typical of in‐flight icing. Computational efficiency is obtained by applying the mesh displacement to an automatically selected small subset of the entire computational domain. The methodology is validated first in the case of deformations typical of fluid‐structure interaction problems, including wing bending, a helicopter rotor in forward flight, and the twisting of a high‐lift wing configuration. The approach is then assessed for aero‐icing on two swept wings and compared against experimental measurements where available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号