首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A non‐ionic cryptand‐22 surfactant consisting of a macrocyclic cryptand‐22 polar head and a long paraffinic chain (C10H21‐Cryptand‐22) was synthesized and characterized. The critical micellar concentration (CMC) of the cryptand surfactant in ROH/H2O mixed solvent was determined by the pyrene fluorescence probe method. In general, the cmc of the cryptand surfactant increased upon decreasing the polarity of the surfactant solution. The cryptand surfactant also can behave as a pseudo cationic surfactant by protonation of cryptand‐22 or complexation with metal ions. Effects of protonation and metal ions on the cmc of the cryptand surfactant were investigated. A preliminary application of the cryptand surfactant as an ion‐transport carrier for metal ions, e.g., Li+, Na+, K+ and Sr2+, through an organic liquid‐membrane was studied. The transport ability of the cryptand surfactant for these metal ions was in the order: K+ ≥ Na+ < Li+ < Sr2+. A comparison of the ion‐transport ability of the cryptand surfactant with other macrocyclic polyethers, e.g., dibenzo‐18‐crown‐6, 18‐crown‐6 and benzo‐15‐crown‐5, was studied and discussed. Among these macrocyclic polyethers, the cryptand surfactant was the best ion‐transport carrier for Na+, Li+ and Sr2+ ions. Furthermore, a foam extraction system using the cryptand surfactant to extract the cupric ion was also investigated.  相似文献   

2.
A practical, two‐step synthesis of novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 has been reported. The strategy employed for the synthesis of the desired molecules involved Duff formylation of benzo‐15‐crown‐5 to get 4‐formyl benzo‐15‐crown‐5 followed by subsequent reactions with substituted indoles in trifluoroacetic acid to yield novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 in moderate to good yield. One of the reported novel molecule tested for the complexation behavior with various metal cations, such as Li+, Na+, K+, Mg2+ Ca2+, Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Ba2+, Hg2+, and Pb2+, showed a visual colorimetric probe for the detection of mercury cations (Hg2+) in an aqueous medium.  相似文献   

3.
Macrocyclic polyethers containing a cholesteryl moiety, e.g., cholesteryl benzo‐15‐crown‐5 (C27H45OOC‐B15C5) and cholesteryl cryptand22 (C27H45OOC‐Cryptand22), were synthesized. The cholesteryl crown ether C27H45OOC‐B15C5 showed liquid crystal characteristics which were observed by polarizing microscopy. In contrast, the cholesteryl cryptand C27H45OOC‐Cryptand22 showed no liquid crystal characteristics. The doping effect of inorganic salts on the liquid crystal formation of cholesteryl benzo‐15‐crown‐5 was also investigated, revealing that the addition of salts resulted in narrower liquid crystal temperature ranges. Both cholesteryl cryptand C27H45OOC‐Cryptand22 and cholesteryl crown ether C27H45OOC‐B15C5 also exhibited the distinctive characteristics of surfactants in solutions. Fluorescence probe of pyrene and surface tension measurement were applied as sensitive tools to study the formation of the micelles and determine the critical micellar concentration (CMC) of the cholesteryl cryptand and crown ether surfactants. The salt effect on the CMC of the cholesteryl cryptand surfactant was also investigated and is discussed. Furthermore, the cholesteryl benzo‐15‐crown‐5 was successfully employed as a quite good phase transfer catalyst for the oxidation of alcohols, e.g., benzhydrol, with NaMnO4 as an oxidant. Effects of temperature, solvent and concentration of the crown ether catalyst on the oxidation of benzhydrol were also investigated.  相似文献   

4.
A chloroform membrane system containing dibenzodiaza‐15‐crown‐4 was found to be a highly efficient and selective transport of Ag+ ions through a chloroform liquid membrane. In the presence of thiosulfate ion as a suitable ion stripping agent in the receiving phase, the amount of silver transported across the liquid membrane after 105 minis 95 ± 1.3%. The selectivity of Ag+transport from aqueous solutions containing Tl+, Pb2+, Cd2+, Ni2+, Co2+, K+, Ca2+, Sr2+, Hg2+, Zn2+, Cu2+was investigated. The interfering effect of Cu2+ ions was drastically diminished in the presence of EDTA as a proper masking agent in the source phase.  相似文献   

5.
A chloroform membrane system containing a given mixture of dibenzyldiaza‐18‐crown‐6 and palmetic acid was applied for transport of Pb2+ ions. The transport was capable of moving metal ions “uphill”. Thus, it was possible to follow the transfer of Pb(II) from the aqueous source phase to the organic layer and from the organic layer to the receiving phase. The effects of thiosulfate concentration in the receiving phase, palmetic acid and dibenzyldiaza‐18‐crown‐6 concentration in the organic phase on the efficiency of the transport system were examined. By using S2O32? ion as metal ion acceptor in the receiving phase, the amount of lead ion transport across the liquid membrane after 150 minutes is 96 ± 1.5%. The selectivity and efficiency of lead transport from aqueous solution containing Cu2+, Tl+, Ag+, Co2+, Ni2+, Mg2+, Zn2+, Hg2+, Cd2+, Ca2+ were investigated. In the presence of thiosulfate as a suitable masking agent in the source phase, the interfering effects of Ag+ and Cu2+ were diminished drastically.  相似文献   

6.
Novel dual molecular‐ and ion‐recognition responsive poly(N‐isopropylacrylamide‐co‐benzo‐12‐crown‐4‐acrylamide) (PNB12C4) linear copolymers with benzo‐12‐crown‐4 (B12C4) as both guest and host units are prepared. The copolymers exhibit highly selective sensitivities toward γ‐cyclodextrin (γ‐CD) and Na+. The presence of γ‐CD induces the lower critical solution temperature (LCST) of PNB12C4 copolymer to shift to a higher value due to the formation of 1:1 γ‐CD/B12C4 host‐guest inclusion complexes, while Na+ causes a negative shift in LCST due to the formation of 2:1 “sandwich” B12C4/Na+ host‐guest complexes. Regardless of the complexation order, when γ‐CD and Na+ coexist with PNB12C4, competitive complexation actions of B12C4 as both guest and host units toward γ‐CD and Na+ finally form equilibrium 2:2:1 γ‐CD/B12C4/Na+ composite complexes, and the final LCST values of PNB12C4 copolymer reach almost the same level. The results provide valuable guidance for designing and applying PNB12C4‐based smart materials in various applications.

  相似文献   


7.
A water in soluble long‐chain crown ether alkyl (C18)‐benzo‐15‐crown‐5 was synthesized and applied as a coating material on quartz crystal membranes of a liquid flow piezo electric crystal sensor. The oscillating crown ether‐coated piezo electric (PZ) crystal with a home‐made computer inter face was prepared as a liquid chromato graphic (LC) detector for organic species and metal ions in aqueous solutions. The oscillating frequency of the quartz crystal decreased due to the adsorption of organic molecules or metal ions on crown ether molecules. Effects of functional group, molar mass, steric hindrance, and polarity of organic molecules on frequency responses of the crown ether coated PZ crystal detector were investigated. The frequency responses of the crown ether coated PZ crystal detector for various molecules were in the order: amines > carboxylic acids > alcohols > ketones. The crown ether PZ detector also exhibited good sensitivity for some heavy metal ions and the frequency shifts were in the order: Cr3+ » Pb2+ > Co2+ > Cd2+ > Ni2+ > Cu2+. The crown ether coated piezo electric crystal LC detector demonstrated low detection limits for various polar organic molecules, e.g., 6.0 × 10?5 M for propylamine, and metal ions, e.g., 2.9 × 10?5 M (1.8 ppm) for Cu2+; the crown ether PZ detector also gave good reproducibility when re used. A quite sensitive electrochemical quartz crystal microbalance (EQCM) detection system was also set‐up for detecting trace heavy metal ions in solutions. The variation in frequency of the PZ crystal and the diffusion current were observed simultaneously after the reduction in heavy metal ions such as Cu2+ and Ni2+. The EQCM detection system exhibited fairly good sensitivity, e.g., 112 Hz/ppm for Cu2+ and a good detection limit, e.g., 0.13 ppm for Cu2+ ions. Comparison between EQCM and PZ detection systems was made and discussed.  相似文献   

8.
Highly selective all solid state electrochemical sensor based on a synthesized compound i.e. 2‐(1‐(2‐((3‐(2‐hydroxyphenyl)‐1H‐pyrozol‐1‐yl)methyl)benzyl)‐1H‐pyrazol‐3‐yl)phenol (I) as an ionophore has been prepared and investigated for the selective quantification of chromium(III) ions. The effect of various plasticizers, viz. dibutyl phosphonate (DBP), dibutyl(butyl) phosphonate (DBBP), nitrophenyl octyl ether (NPOE), tris‐(2‐ethylhexyl)phosphonate (TEP), tri‐butyl phosphonate (TBP), dioctyl phthalate (DOP), dioctyl sebacate (DOS), benzyl acetate (BA) and acetophenone (AP) along with anion excluders NaTPB (sodium tetraphenyl borate) and KClTPB (potassium(tetrakis‐4‐chlorophenyl)borate was also studied. The optimum composition of the best performing membrane contained (I):KClTPB:NPOE:PVC in the ratio 15 : 3 : 40 : 42 w/w. The sensor exhibited near Nernstian slope of 20.1±0.2 mV/decade of activity in the working concentration range of 1.2×10?7–1.0×10?1 M, and in a pH range of 3.8–4.5. The sensor exhibited a fast response time of 10 s and could be used for about 5 months without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Na+, Li+, K+, Cu2+, Sr2+, Ni2+, Co2+, Ba2+, Hg2+, Pb2+, Zn2+, Cs+, Mg2+, Cd2+, Al3+, Fe3+and La3+. The activity of Cr(III) ions was successfully determined in the industrial waste samples by using this sensor.  相似文献   

9.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

10.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

11.
The possibility of the ion-exchange of Na+ and K+ cations contained in OFF-type zeolite for H+, Ni2+, Cu2+, Co2+, and La3+ cations is investigated. Chemical and phase compositions, the morphology of crystals, and the adsorption properties of synthesized samples are studied via X-ray fluorescence and X-ray diffraction analysis, IR spectroscopy, scanning electron microscopy, and adsorption measurements.  相似文献   

12.
New crown ether‐functionalized benzimidazoles was designed and synthesized via formylation of dibenzo‐18‐crown‐6 followed by condensation with different o‐phenylene diamines. The complexation properties of crown ether‐functionalized benzimidazoles with various metals (K+, Ca2+, Ba2+, Co2+, Hg2+) were examined using UV–vis spectroscopy. Hg2+ showed a well‐defined peculiar absorption maximum at 366 nm exclusively. All these newly synthesized compounds were screened for antifungal activity against Aspergillus niger and Aspergillus oryzae, respectively.  相似文献   

13.
A novel fluoroionophore compound was synthesized from a boron dipyrromethene (BODIPY) fluorophore and 4′-formylbenzo-15-crown-5 ionophore groups. Photophysical properties of the BODIPY-crown compound were studied with UV–Vis and fluorescence spectroscopy. The effect of metalic cations (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Al3+, Fe3+, Cu2+, Co2+, Zn2+, Ag+, Hg2+, Pb2+) on the absorption and fluorescence spectra of compound 2 was investigated. Blue shifts were detected in UV–Vis spectra upon addition of some metal ions (Al3+ > Fe3+ > Na+). At the same time, the emission intensity of this complex increased due to binding of Na+ ion to the benzo crown cavity. Additionally, a decrease in the intensity of the 630 nm emission peak and an increase in the intensity of the 570 nm emission peak was observed in the fluorescence emission spectra following addition of Al3+ and Fe3+ ions.  相似文献   

14.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

15.
5,11,17,23‐Tetra‐tert‐butyl‐25,26,27,28‐tetrakis(diphenylphosphinoylmethoxy)calix[4]arene ( 1 )has been used for the preparation of a graphite coated thorium ion‐selective electrode (Th4+‐ISE). The plasticized PVC membrane containing 30% PVC, 58% ortho‐nitrophenyloctylether (NPOE), 4% sodium tetraphenylborate (NaTPB) and 8% ionophore was directly coated on a graphite rod. This sensor gave good Nernstian responses with a slope of 15.5 ± 0.1 mV/decade over a concentration range of 1 × 10?5 ?1 × 10?3 M of thorium ions with a limit of detection of 7.9 × 10?6 M. The dynamic response time of the electrode to achieve a steady potential was found to be about 15 seconds. The potential of the prepared sensor was independent of the pH variation in the range 2.3–4.0. The selectivity relative to several mono‐, di‐ and tri‐valent metal ions, i.e. Li+, Na+, K+, Ag+, NH4+, Sr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, La3+, Sm3+, Dy3+, Er3+ and Y3+ was examined. This electrode can be used for 6 months without any considerable divergences in the potential response. The sensor was successfully used as an indicator electrode for the potentiometric titration of a thorium solution using a standard solution of EDTA.  相似文献   

16.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

17.
It is a challenge to recover lithium from the leaching solution of spent lithium-ion batteries, and crown ethers are potential extractants due to their selectivity to alkali metal ions. The theoretical calculations for the selectivity of crown ethers with different structures to Li ions in aqueous solutions were carried out based on the density functional theory. The calculated results of geometries, binding energies, and thermodynamic parameters show that 15C5 has the strongest selectivity to Li ions in the three crown ethers of 12C4, 15C5, and 18C6. B15C5 has a smaller binding energy but more negative free energy than 15C5 when combined with Li+, leading to that the lithium ions in aqueous solutions will combine with B15C5 rather than 15C5. The exchange reactions between B15C5 and hydrated Li+, Co2+, and Ni2+ were analyzed and the results show that B15C5 is more likely to capture Li+ from the hydrated ions in an aqueous solution containing Li+, Co2+, and Ni2+. This study indicates that it is feasible to extract Li ions selectively using B15C5 as an extractant from the leaching solution of spent lithium-ion batteries.  相似文献   

18.
Self‐assembled alkyl‐ureido‐benzo‐15‐crown‐5‐ethers are selective ionophores for K+ cations, which are preferred to Na+ cations. The transport mechanism is determined by the optimal coordination rather than classical dimensional compatibility between the crown ether hole and the cation diameter. Herein, we demonstrate that systematic changes of the structure lead to unexpected modifications in the cation‐transport activity and suffice to produce adaptive selection. We show that the main contribution to performance arises from optimal constraints on the conformational freedom, which are determined by the binding macrocycles, the nature of the hydrogen‐bonding groups, and the hydrophobic tails. Simple changes to the flexible 15‐crown‐5‐ether lead to selective carriers for Na+. Hydrophobic stabilization of the channels through mutual interactions between lipids and variable hydrophobic tails appears to be an important cause of increased activity. Oppositely, restricted translocation is achieved when constrained hydrogen‐bonded macrocyclic relays are less dynamic in a pore superstructure.  相似文献   

19.
[Ba(benzo‐15‐crown‐5)2](I3)2 and [Ba(benzo‐15‐crown‐5)2](I7)2 can be obtained in crystalline form by reacting benzo‐15‐crown‐5 (C14H20O5), barium iodide (BaI2), and iodine (I2) in ethan‐ole /dichloromethane. The triiodide consists of a sandwich‐like cation [Ba(benzo‐15‐crown‐5)2]2+ and an isolated symmetrically linear I3 anion. The unusual I7 anion in the heptaiodide can be described as a V‐shaped pentaiodide unit, which is connected with a slightly widened iodine molecule to the rare Z‐form of the heptaiodide ion. In the crystal structure, secondary bonding distances lead to almost planar ten‐membered iodine rings, which are connected by common edges to form staircase‐like bands.  相似文献   

20.
Reduction of neutral metal clusters (Co4(CO)12, Ru3(CO)12, Fe3(CO)12, Ir4(CO)12, Rh6(CO)16, {CpMo(CO)3}2, {Mn(CO)5}2) by decamethylchromocene (Cp*2Cr) or sodium fluorenone ketyl in the presence of cryptand[2.2.2] and DB‐18‐crown‐6 was studied. Nine new salts with paramagnetic Cp*2Cr+, cryptand[2.2.2](Na+), and DB‐18‐crown‐6(Na+) cations and [Co6(CO)15]2– ( 1 , 2 ), [Ru6(CO)18]2– ( 3 – 4 ) dianions, [Rh11(CO)23]3– ( 6 ) trianions, and new [Ir8(CO)18]2– ( 5 ) dianions were obtained and structurally characterized. The increase of nuclearity of clusters under reduction was shown. Fe3(CO)12 preserves the Fe3 core under reduction forming the [Fe3(CO)11]2– dianions in 7 . The [CpMo(CO)3]2 and [Mn(CO)5]2 dimers dissociate under reduction forming mononuclear [CpMo(CO)3] ( 8 ) and [Mn(CO)5] ( 9 ) anions. In all anions the increase of negative charge on metal atoms shifts the bands attributed to carbonyl C–O stretching vibrations to smaller wavenumbers in agreement with the elongation of the C–O bonds in 1 – 9 . In contrast, the M–C(CO) bonds are noticeably shortened at the reduction. Magnetic susceptibility of the salts with Cp*2Cr+ is defined by high spin Cp*2Cr+ (S = 3/2) species, whereas all obtained anionic metal clusters and mononuclear anions are diamagnetic. Rather weak magnetic coupling between S = 3/2 spins is observed with Weiss temperature from –1 to –11 K. That is explained by rather long distances between Cp*2Cr+ and the absence of effective π–π interaction between them except compound 7 showing the largest Weiss temperature of –11 K. The {DB‐18‐crown‐6(Na+)}2[Co6(CO)15]2– units in 2 are organized in infinite 1D chains through the coordination of carbonyl groups of the Co6 clusters to the Na+ ions and π–π stacking between benzo groups of the DB‐18‐crown‐6(Na+) cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号