首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth and the optical properties of epitaxial heterostructures Si(111)/(CrSi2 nanocrystallites)/Si(111) based on nanosized islands of chromium disilicide (CrSi2) on Si(111) were studied using low-energy electron diffraction, atomic-force microscopy, and optical reflection and transmission spectroscopy. The heterostructures with thicknesses of 0.1, 0.3, 0.6, 1.0, and 1.5 nm were formed by reactive epitaxy at a temperature of 500°C followed by the epitaxial growth of silicon at 750°C. The specific features of changes in the density and sizes of CrSi2 islands on the silicon surface were determined at T = 750°C as the chromium layer thickness was increased. It was established that, in the heterostructures with chromium layer thicknesses exceeding 0.6 nm, a small part of faceted Cr2Si2 nanocrystallites (NCs) emerge into near-surface region of the silicon, which is confirmed by the data from optical reflectance spectroscopy and an analysis of the spectral dependence of the absorption coefficient. A critical size of NCs is shown to exist above which their shift to the silicon surface is hampered. The decreased density of emerging NCs at chromium layer thicknesses of 1.0–1.5 nm is associated with the formation of coarser NCs within a silicon layer, which is confirmed by the data from differential reflection spectroscopy.  相似文献   

2.
Nitrogen and boron BF2, and nitrogen, carbon, and boron BF2 high-dose (6×1016–3×1017 cm-2) co-implantation were performed at energies of about 21–77 keV. Subsequent high-temperature annealing processes (600, 850, and 1200 °C) lead to the formation of three and two surface layers respectively. The outer layer mainly consists of polycrystalline silicon and some amorphous material and Si3N4 inclusions. The inner layer is highly defective crystalline silicon, with some inclusions of Si3N4 too. In the N+B-implanted sample the intermediate layer is amorphous. Co-implantation of boron with nitrogen and with nitrogen and carbon prevents the excessive diffusivity of B and leads to a lattice-parameter reduction of 0.7–1.0%. Received: 10 January 2002 / Accepted: 30 May 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/3974895; E-mail: Lucia.Barbadillo@uam.es  相似文献   

3.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

4.
Absolute cross-sections for electron-impact ionization and dissociation of C2H2+ and C2D2+ have been measured for electron energies ranging from the corresponding thresholds up to 2.5 keV. The animated crossed beams experiment has been used. Light as well as heavy fragment ions that are produced from the ionization and the dissociation of the target have been detected for the first time. The maximum of the cross-section for single ionization is found to be (5.56 ± 0.03)× 10-17 cm2 around 140 eV. Cross-sections for dissociation of C2 H2+ (C2D2+) to ionic products are seen to decrease for two orders of magnitude, from C2D+ (12.6 ± 0.3) × 10-17 cm2 over CH+(9.55 ± 0.06) × 10-17 cm2, C+ (6.66 ± 0.05) × 10-17 cm2, C2+ (5.36 ± 0.27) × 10-17 cm2, H+ (4.73 ± 0.29) × 10-17 cm2 and CH2+ (4.56 ± 0.27) × 10-18 cm2 to H2+ (5.68 ± 0.49) × 10-19 cm2. Absolute cross-sections and threshold energies have been compared with the scarce data available in the literature.  相似文献   

5.
Consecutive plasma-epitaxial synthesis on silicon wafers is used for the first time to fabricate monolithic nanoheterostructures with embedded nanocrystals (NC) of chromium disilicide (Si–NC CrSi2–Si). It is found that, initially, nanoislands form on the surface and within a coating layer of silicon, followed by the formation of small (10–15 nm) nanocrystals of semiconducting chromium disilicide (CrSi2) at a high occupation density ((2–3)⋅1011 cm–2). During formation of silicon-silicide-silicon heterostructures, CrSi2 nanocrystallites “float up” into the near surface area of the covering silicon layer.  相似文献   

6.
The local electronic structure of 〈111〉 n-silicon single-crystal samples is studied using Si L 2, 3 x-ray emission spectroscopy. The Si x O y N z system is formed by implanting the samples with an 16O 2 + and 14N 2 + ion molecular beam (the oxygen/nitrogen ratio in the molecular beam is 1:1, the implantation energy is 30 keV, the irradiation fluences vary from 2.0 × 1017 to 1.5 × 1018 cm?2, the samples after the implantation are subjected to rapid thermal annealing in nitrogen at 800°C for 5 min). A comparison of the recorded Si L spectra with the spectra of the reference samples reveals clear correlations between the specific features of the electronic structure of the silicon oxynitride formed upon implantation and the ion fluence. It is shown that the implantation at fluences of 2 × 1017 and 1 × 1018 cm?2 results in the predominant formation of Si3N4, whereas the implantation at a fluence of 1.5 × 1018 cm?2 leads primarily to the formation of SiO2 layers in single-crystal silicon. The most probable factors and mechanisms accounting for such implantation of 16O 2 + and 14N 2 + into the samples under study are discussed. The experimental data obtained are compared with ab initio full-potential linearized augmented plane wave calculations of the band structure.  相似文献   

7.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

8.
Low-energy electron diffraction and differential reflectance spectroscopy are used to study the self-formation of chromium disilicide (CrSi2) nanoislands on a Si(111) surface. The semiconductor properties of the islands show up even early in chromium deposition at a substrate temperature of 500°C, and the two-dimensional growth changes to the three-dimensional one when the thickness of the chromium layer exceeds 0.06 nm. The maximal density of the islands and their sizes are determined. The MBE growth of silicon over the CrSi2 nanoislands is investigated, an optimal growth temperature is determined, and 50-nm-thick atomically smooth silicon films are obtained. Ultraviolet photoelectron spectroscopy combined with the ion etching of the specimens with embedded nanocrystallites demonstrates the formation of the valence band, indicating the crystalline structure of the CrSi2. Multilayer epitaxial structures with embedded CrSi2 nanocrystallites are grown.  相似文献   

9.
A Q-switched Nd: YAG laser with a pulse duration of 20 ns was used to investigate effects of laser annealing in gallium implanted silicon. Rutherford backscattering and Hall-effect measurements were performed to evaluate the annealed layer. Differential Hall-effect measurements were carried out to obtain carrier concentration profiles after annealing. It was found that a maximum sheet carrier concentration of 8×1015 cm−2 can be obtained for a gallium implantation of 1016 cm−2 by laser annealing with an energy density of more than 1.0 J cm−2. Although the peak carrier concentration was found to be 8.0×1020 cm−3, the annealed layer showed polycrystalline structures even after annealing with an energy density up to 4J cm−2. The annealing took place in the solid phase in this energy density range.  相似文献   

10.
A new three-matrix mixed vanadate crystal Nd:Lu0.33Y0.36Gd0.3VO4 (Nd:LuYGdVO4) crystal was grown by the Czochralski method. Room temperature absorption and fluorescence spectra of the Nd:LuYGdVO4 crystals were measured and the spectroscopic parameters were calculated by the Judd-Ofelt theory. The intensity parameters of the Nd:LuYGdVO4 crystal were Ω2 = 9.736 × 10−20 cm2, Ω4 = 4.179 × 10−20 cm2, Ω6 = 8.020 × 10−20 cm2 and the stimulate emission cross section was 5.3 × 10−19 cm2. Diodepumped actively Q-switched and passively Q-switched Nd:LuYGdVO4 and Nd:Lu0.14Y0.86VO4 lasers at 1.06 μm were demonstrated. The results indicate that, for both actively and passively Q-switched lasers, the Nd:LuYGdVO4 lasers can generate shorter pulse width with higher peak power than the Nd:Lu0.14Y0.86VO4 lasers at the same cavity conditions.  相似文献   

11.
Anisotropy of the nonlinear absorption of Co2+ ions in MgAl2O4 single crystal at the wavelengths of 1.35 and 1.54 μm has been experimentally demonstrated. The experimental data are analyzed in the framework of a phenomenological model when the Co2+ ions are described as three sets of linear dipoles oriented along the crystallographic axes. Ground-state and excited state absorption cross-sections at 1.35 and 1.54 μm are evaluated to be σgsa=(4.0±0.3)×10-19, σesa=(3.6±0.4)×10-20 cm2 and σgsa=(5.1±0.3)×10-19, σesa=(4.6±0.4)×10-20 cm2, respectively. PACS 42.55.Rz; 71.20.Be  相似文献   

12.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

13.
Absolute cross-sections have been measured for electron-impact dissociative excitation and ionization of CD2+ leading to formation of CD22+, CD+, C+, D2+ and D+. The animated crossed-beams method is applied in the energy range from the reaction threshold up to 2.5 keV. The maximum total cross-sections are found to be (1.2±0.1)×10-17 cm2, (6.1±0.7)×10-17 cm2, (6.4±0.7)×10-17 cm2, (26.3±3.8)×10-19 cm2 and (14.9±1.4)×10-17 cm2 for CD22+, CD+, C+, D2+ and D+ respectively. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product, which are of significant interest in fusion plasma edge modelling and diagnostics. Conforming to the scheme recently applied in the CD4+ and in the CD3+ articles, the cross-sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic-energy-release distributions are determined for each ionic fragment at selected electron energies.  相似文献   

14.
15.
The variations in the composition and structure of CoSi2/Si(111) surface layers under Ar+ ion bombardment with subsequent annealing has been studied. It has been demonstrated that nanocluster phases enriched with Si atoms form on the CoSi2 surface at low doses D ≤ 1015 cm–2, and a pure Si nanofilm forms at high doses.  相似文献   

16.
Absolute cross-sections have been measured for electron-impact dissociativeexcitation and ionization of CD 2 + leading toformation of CD 2 2+ , CD+, C+,D 2 + and D+. The animated crossed-beams methodis applied in the energy range from the reaction threshold up to 2.5 keV.The maximum total cross-sections are found to be (1.2±0.1)×10-17 cm2, (6.1±0.7)×10-17 cm2, (6.4±0.7)×10-17 cm2, (26.3±3.8)×10-19 cm2 and (14.9±1.4)×10-17 cm2 forCD 2 2+ , CD+, C+,D 2 + and D+ respectively. Individualcontributions for dissociative excitation and dissociative ionization aredetermined for each singly-charged product, which are of significantinterest in fusion plasma edge modelling and diagnostics. Conforming to thescheme recently applied in the CD 4 + and in theCD 3 + articles, the cross-sections are presented inclosed analytic forms convenient for implementation in plasma simulationcodes. Kinetic-energy-release distributions are determined for each ionicfragment at selected electron energies.  相似文献   

17.
Duan’s simple model is extended to analyze the mixing of the 4f N − 15d configuration with the 4f N states. The explicit static coupling and traditional dynamic coupling are considered, and the parameters are fitted according to the absorption spectrum in LiYF4: Nd3+. The parameter values obtained are as follows: T 32 = −28i × 10−7, T 52 = −1151i × 10−7, A 322 = 192i × 10−12 cm, A 524 = i × 10−12 cm, A 726 = 54i × 10−12 cm, and A 766 = −680i × 10−12 cm. Compared to the experimental measurements, the present model yields better results than those obtained from the Judd-Ofelt theory. The text was submitted by the authors in English.  相似文献   

18.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

19.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

20.
The surface layer of an equiatomic TiNi alloy, which exhibits the shape memory effect in the martensitic state, is modified with high-dose implantation of 65-keV N+ ions (the implantation dose is varied from 1017 to 1018 ions/cm2). TiNi samples are implanted by N+, Ni+-N+, and Mo+-W+ ions at a dose of 1017–1018 cm−2 and studied by Rutherford backscattering, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction (glancing geometry), and by measuring the nanohardness and the elastic modulus. A Ni+ concentration peak is detected between two maxima in the depth profile of the N+ ion concentration. X-ray diffraction (glancing geometry) of TiNi samples implanted by Ni+ and N+ ions shows the formation of the TiNi (B2), TiN, and Ni3N phases. In the initial state, the elastic modulus of the samples is E = 56 GPa at a hardness of H = 2.13 ± 0.30 GPa (at a depth of 150 nm). After double implantation by Ni+-N+ and W+-Mo+ ions, the hardness of the TiNi samples is ∼2.78 ± 0.95 GPa at a depth of 150 nm and 4.95 ± 2.25 GPa at a depth of 50 nm; the elastic modulus is 59 GPa. Annealing of the samples at 550°C leads to an increase in the hardness to 4.44 ± 1.45 GPa and a sharp increase in the elastic modulus to 236 ± 39 GPa. A correlation between the elemental composition, microstructure, shape memory effect, and mechanical properties of the near-surface layer in TiNi is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号