首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A second-gradient theory in finite strains is proposed to deal with the phenomena of material growth and remodeling, as happens in biomechanics, on account of mass transport and morphogenetic species. It involves first-order and second-order transplants (local structural rearrangements) and two material connections on the material manifold. It is shown that the evolution of these structural changes or “material inhomogeneities” is governed by Eshelby-like stress and hyperstress tensors. A thermodynamically admissible set of constitutive equations is proposed. The complexity due to the finite-strain gradient theory is a necessity in order to accommodate mass exchanges and diffusion of species.  相似文献   

2.
Summary  The use of higher-order strain-gradient models in mechanics is studied. First, existing second-gradient models from the literature are investigated analytically. In general, two classes of second-order strain-gradient models can be distinguished: one class of models has a direct link with the underlying microstructure, but reveals instability for deformation patterns of a relatively short wave length, while the other class of models does not have a direct link with the microstructure, but stability is unconditionally guaranteed. To combine the advantageous properties of the two classes of second-gradient models, a new, fourth-order strain-gradient model, which is unconditionally stable, is derived from a discrete microstructure. The fourth-gradient model and the second-gradient models are compared under static and dynamic loading conditions. A numerical approach is followed, whereby the element-free Galerkin method is used. For the second-gradient model that has been derived from the microstructure, it is found that the model becomes unstable for a limited number of wave lengths, while in dynamics, instabilities are encountered for all shorter wave lengths. Contrarily, the second-gradient model without a direct link to the microstructure behaves in a stable manner, although physically unrealistic results are obtained in dynamics. The fourth-gradient model, with a microstructural basis, gives stable and realistic results in statics as well as in dynamics. Received 13 June 2001; accepted for publication 6 November 2001  相似文献   

3.
Edge fracture is an instability of cone-plate and parallel plate flows of viscoelastic liquids and suspensions, characterised by the formation of a `crack' or indentation at a critical shear rate on the free surface of the liquid. A study is undertaken of the theoretical, experimental and computational aspects of edge fracture. The Tanner-Keentok theory of edge fracture in second-order liquids is re-examined and is approximately extended to cover the Criminale-Ericksen-Filbey (CEF) model. The second-order theory shows that the stress distribution on the semi-circular crack is not constant, requiring an average to be taken of the stress; this affects the proportionality constant, K in the edge fracture equation −N 2c = KΓ/a, where N 2c is the critical second normal stress difference, Γ is the surface tension coefficient and a is the fracture diameter. When the minimum stress is used, K = 2/3 as found by Tanner and Keentok (1983). Consideration is given to the sources of experimental error, including secondary flow and slip (wall effect). The effect of inertia on edge fracture is derived. A video camera was used to record the inception and development of edge fracture in four viscoelastic liquids and two suspensions. The recorded image was then measured to obtain the fracture diameter. The edge fracture phenomenon was examined to find its dependence on the physical dimensions of the flow (i.e. parallel plate gap or cone angle), on the surface tension coefficient, on the critical shear rate and on the critical second normal stress difference. The critical second normal stress difference was found to depend on the surface tension coefficient and the fracture diameter, as shown by the theory of Tanner and Keentok (1983); however, the experimental data were best fitted by the equation −N 2c = 1.095Γ/a. It was found that edge fracture in viscoelastic liquids depends on the Reynolds number, which is in good agreement with the inertial theory of edge fracture. Edge fracture in lubricating grease and toothpaste is broadly consistent with the CEF model of edge fracture. A finite volume method program was used to simulate the flow of a viscoelastic liquid, obeying the modified Phan-Thien-Tanner model, to obtain the velocity and stress distribution in parallel plate flow in three dimensions. Stress concentrations of the second normal stress difference (N 2) were found in the plane of the crack; the velocity distribution shows a secondary flow tending to aid crack formation if N 2 is negative, and a secondary flow tending to suppress crack formation if N 2 is positive. Received: 4 January 1999 Accepted: 19 May 1999  相似文献   

4.
A new approach on MHD natural convection boundary layer flow from a finite flat plate of arbitrary inclination in a rotating environment, is presented. This problem plays a significant role on boundary layer flow control. It is shown that taking into account the pressure rise region at the leading edge of the plate leads to avoid separation and the back flow is reduced by the strong magnetic field. It is also shown that the frictional drag at the leading edge of the plate is reduced when the inclination angle α=π/4. In the case of isothermal flat plate, the bulk temperature becomes identical for any value of Gr (Grashof number) when the value of M 2 (Hartmann number) and K 2 (rotation parameter) are kept fixed.  相似文献   

5.
We develop a continuum-mechanical formulation and generalization of the Navier–Stokes-α equation based on a recently developed framework for fluid-dynamical theories involving higher-order gradient dependencies. Our flow equation involves two length scales α and β. The first of these enters the theory through the specific free-energy α 2|D|2, where D is the symmetric part of the gradient of the filtered velocity, and contributes a dispersive term to the flow equation. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity and which contributes a viscous term, with coefficient proportional to β 2, to the flow equation. In contrast to Lagrangian averaging, our formulation delivers boundary conditions and a complete structure based on thermodynamics applied to an isothermal system. For a fixed surface without slip, the standard no-slip condition is augmented by a wall-eddy condition involving another length scale characteristic of eddies shed at the boundary and referred to as the wall-eddy length. As an application, we consider the classical problem of turbulent flow in a plane, rectangular channel of gap 2h with fixed, impermeable, slip-free walls and make comparisons with results obtained from direct numerical simulations. We find that α/β ~ Re 0.470 and /h ~ Re −0.772, where Re is the Reynolds number. The first result, which arises as a consequence of identifying the specific free-energy with the specific turbulent kinetic energy, indicates that the choice β = α required to reduce our flow equation to the Navier–Stokes-α equation is likely to be problematic. The second result evinces the classical scaling relation η/L ~ Re −3/4 for the ratio of the Kolmogorov microscale η to the integral length scale L.   相似文献   

6.
Summary We study the two-dimensional instantaneous Stokes flow driven by gravity in a viscous triangular prism supported by a horizontal rigid substrate and a vertical wall. The oblique side of the prism, inclined at an angle α with respect to the substrate, is a fluid-air interface, where the stresses are zero and surface tension is neglected. We develop the stream function ψ in polar coordinates (r,θ) centered at the vertex of α and split it into an inhomogeneous part, which accounts for gravity effects, and a homogeneous part, which is expressed as a series expansion. The inhomogeneous part and the first term of the expansion may be envisioned, respectively, as self-similar solutions of the first kind and of the second kind for r→0, each one holding in complementary α domains with a crossover at α c =21.47, which we study in some detail. The coefficients of the series are calculated by truncating the expansion and using the method of direct collocation with a suitable set of points at the wall. The solution strictly holds for t=0, because later the free surface ceases to be a plane; nevertheless, it provides a good approximation for the early time evolution of the fluid profile, as shown by the comparison with numerical simulations. For 0<α<45, the vertex angle remains constant and the edge remains strictly at rest; the transition at α c manifests itself through a change in the rate of growth of the curvature. The time at which the edge starts to move (waiting time) cannot be calculated since the instantaneous solution ceases to be valid. For α>45, the instantaneous local solution indicates that the surface near the vertex is launched against the substrate so that the edge starts to move immediately with a power law dependence on time t. However, due to the high value of the exponent, the vertex may seem to be at rest for some finite time even in this case. Received 29 August 1997; accepted for publication 21 January 1998  相似文献   

7.
In this paper, we consider a two-dimensional homogeneous isotropic elastic material state in the arch-like region arb, 0 ≤ θα, where (r, θ) denote plane polar coordinates. We assume that three of the edges r = a, r = b, θ = α are traction-free, while the edge θ = 0 is subjected to an (in plane) self-equilibrated load. We define an appropriate measure for the Airy stress function φ and then we establish a clear relationship with the Saint-Venant's principle on such regions. We introduce a cross-sectional integral function I(θ) which is shown to be a convex function and satisfies a second-order differential inequality. Consequently, we establish a version of the Saint-Venant principle for such a curvilinear strip, without requiring of any condition upon the dimensions of the arch-like region.  相似文献   

8.
We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e n and v n , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ 0 ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.  相似文献   

9.
 In this paper, the problem of laminar free convection from a vertical permeable circular cone maintained with non-uniform surface heat flux is considered. The governing boundary layer equations are reduced non-similar boundary layer equations with surface heat flux proportional to x n (where x is the distance measured from the leading edge). The solutions of the reduced equations are obtained by using three distinct solution methodologies; namely, (i) perturbation solution for small transpiration parameter, ξ, (ii) asymptotic solution for large ξ, and (iii) the finite difference solutions for all ξ. The solutions are presented in terms of local skin-friction and local Nusselt number for smaller values of Prandtl number and heat flux gradient and are displayed in tabular form as well as graphically. Effects of pertinent parameters on velocity and temperature profiles are also shown graphically. Solutions obtained by finite difference method are also compared with the perturbation solutions for small and large ξ and found to be in excellent agreement. Received on 1 October 1999  相似文献   

10.
 Results of an experimental investigation of the characteristics of a separation region induced by the interaction of an externally generated oblique shock with the turbulent boundary layer formed in a rectangular half channel are discussed. The experiments were carried out in the supersonic wind tunnel of the Institute of Theoretical and Applied Mechanics SB RAS at a free-stream Mach number M =3.01 over a range of Reynolds numbers Re 1=(9.7–47.5)×106 m-1 and at zero incidence and zero yaw of the model. Particular attention is paid to the size of the zone of the upstream propagation of disturbances (upstream influence region) under different experimental conditions: with varied values of the shock wave strength, half channel width, and Reynolds number. It is shown, in particular, that the normalized upstream influence region length as a function of inclination angle of the shock generator in a rectangular half channel is readily approximated by a simple exponential function. In support of the known reference data obtained for supersonic numbers M and moderate Re in other configurations, it is also shown that the upstream influence region length decreases with increasing Reynolds number. Generalization of experimental data on the length of the upstream influence region formed in similar geometric configurations is possible using an additional reference linear scale which is the distance from the leading edge of the shock generator to the exposed surface. A substantial dependence of the reference dimensions of separation region on the half channel width is also established. Received: 20 January 1997/Accepted: 30 June 1997  相似文献   

11.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

12.
Experimental data on stability of a three-dimensional supersonic boundary layer on a swept wing are presented. Evolution of artificial wave trains was studied. The experiments were conducted for Mach numberM=2.0 and unit Reynolds numberRe 1=6.6·106m−1 on a swept-wing model with a lenticular profile and a40° sweep angle of the leading edge at zero incidence. Excitation of high-frequency disturbances caused by secondary-flow instability at a high initial amplitude was observed. It is shown that the evolution of disturbances at frequencies of10, 20, and30 kHz is similar to the development of travelling waves for the case of subsonic velocities. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 50–56, January–February, 2000.  相似文献   

13.
An algebraic characterization of fluidity applicable to second-gradient materials is argued, individuating a collection of deformations from a reference placement that entail no pointwise stress-power expenditure. For simplicity, the characterization in question is developed in the context of elastic materials, within which general representations for the stress response, both Cauchy-like and Piola-like, of elastic second-gradient fluids are derived.  相似文献   

14.
Incompressible 3-D DNS is performed in non-decaying turbulence with single step chemistry to validate a new analytical expression for turbulent burning velocity. The proposed expression is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. The bending behavior of U T at higher u′ was successfully reproduced by the proposed expression. It is due to decrease in the inverse scale of wrinkling at the leading edge, which is related with an asymmetric profile of FSD with increasing u′. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS throughout the wrinkled, corrugated and thin reaction zone regimes. Results show consistent behavior with most experimental correlations in literature including those by Bradley et al. (Philos Trans R Soc Lond A 338:359–387, 1992), Peters (J Fluid Mech 384:107–132, 1999) and Lipatnikov et al. (Progr Energ Combust Sci 28:1–74, 2002).  相似文献   

15.
Owing to the advantages of noncontact and fullfield measurement, an optical system called the amplitude fluctuation electronic speckle pattern interferometry (AFESPI) method with an out-of-plane setup is employed to investigate the vibration of a cantilever square plate with a crack emanating from one edge. Based on the fact that clear fringe patterns will be shown by the AFESPI method only at resonant frequencies, both the resonant frequencies and the vibration mode shapes can be obtained experimentally at the same time. Three different crack locations will be discussed in detail in this study. One is parallel to the clamped edge, and the other two are perpendicular to the clamped edge. The numerical finite element calculations are compared with the experimental results, and good agreement is obtained for resonant frequencies and mode shapes. The influences of crack locations and lengths on the vibration behavior of the clamped cantilever plate are studied in terms of the dimensionless frequency parameter (λ 2) versus crack length ratio (a/L). The authors find that if the crack face displacements are out of phase, a large value of stress intensity factor may be induced, and the cracked plate will be dangerous from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, causing a zero stress intensity factor, and the cracked plate will be safe.  相似文献   

16.
The aerodynamic forces and flow structures of two airfoils performing “fling and subsequent translation“ and “translation and subsequent clap“ are studied by numerically solving the Navier-Stokes equations in moving overset grids. These motions are relevant to the flight of very small insects. The Reynolds number, based on the airfoil chord length c and the translation velocity U, is 17. It is shown that: (1) For two airfoils performing fling and subsequent translation, a large lift is generated both in the fling phase and in the early part of the translation phase. During the fling phase,a pair of leading edge vortices of large strength is generated; the generation of the vortex pair in a short period results in a large time rate of change of fluid impulse, which explains the large lift in this period. During the early part of the translation, the two leading edge vortices move with the airfoils;the relative movement of the vortices also results in a large time rate of change of fluid impulse, which explains the large lift in this part of motion. (In the later part of the translation, the vorticity in the vortices is diffused and convected into the wake.) The time averaged lift coefficient is approximately 2.4 times as large as that of a single airfoil performing a similar motion. (2) For two airfoils performing translation and subsequent clap, a large lift is generated in the clap phase. During the clap, a pair of trailing edge vortices of large strength are generated; again, the generation of the vortex pair in a short period (which results in a large time rate of change of fluid impulse) is responsible for the large lift in this period. The time averaged lift coefficient is approximately 1.6 times as large as that of a single airfoil performing a similar motion. (3) When the initial distance between the airfoils (in the case of clap, the final distance between the airfoils) varies from 0.1 to 0.2c, the lift on an airfoil decreases only slightly but the torque decreases greatly. When the distance is about lc, the interference effects between the two airfoils become very small.  相似文献   

17.
 Heat fluxes close to the edge of a heated solid plate aligned parallel to the axis of an acoustic standing wave were measured for drive ratios DR≡P A/p m of 1, 2 and 3. It was found that at the highest drive ratio (3), the resulting heat flux vector at the edge of the plate is directed into the plate, opposite to the direction of the heat flux imposed by the resistive heaters within the plate. This observation confirms the thermoacoustic effect previously detected in the visualized temperature fields and discussed in part I of this paper. Through the energy balance the magnitudes of the heat fluxes into the plate, caused by the thermoacoustic effect, were determined. The measured data are in good agreement with numerical and analytical predictions. Received on 18 August 1999  相似文献   

18.
Creep experiments with a solution of polystyrene (M w = 2.6 MDa, 16 vol.%, 25 °C) in diethyl phthalate are reported for stresses between 100 and 2,500 Pa (≈ 3G N 0/4). The aim was to look for a flow transition as reported for strongly entangled poly(isobutylene) solutions. The experiments with the polystyrene solution were repeated for cone angles of 2, 4, and 6° (radius 15 mm) and showed no dependence on cone angle. The Cox–Merz rule was not fulfilled for stresses beyond about 800 Pa. The tangential observation with a CCD camera showed that the edge took a concave shape because of the second normal stress difference. Beyond 1,000 Pa, the concave edge develops into a crevice, thus substantially reducing the effective cross-section. This leads to runaway in a constant torque experiment. At p 21 = 800 Pa, head-on particle tracking confirms that the originally linear velocity profile takes a gooseneck shape, thus revealing shear banding. When the creep stress is stepped down to 100 Pa, this velocity profile evolves back to a linear one. The conclusion from this work is that even if nonlinear creep experiments are reproducible and a steady state is reached, this does not mean that the flow field is homogeneous. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27–29, 2006.  相似文献   

19.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

20.
The temperature dependence of the yield stress τ* Ni 3 Ge single crystals is studied. The temperature dependence τ*(T) in the high-temperature region (above 420 K) is found to be conditioned by thermally activated accumulation of the density of non-screw components of superdislocations. Interaction of point defects with edge dislocations and its effect on the temperature anomaly of the yield stress in Ni 3 Ge single crystals are analyzed. The calculated results are found to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 154–161, July–August, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号