首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

2.
Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s− 1. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.  相似文献   

3.
Laser Induced Breakdown Spectroscopy (LIBS) is presented as a tool for the elemental analysis of glass in forensic applications. Two harmonics of the Nd:YAG laser at 266 nm and 532 nm were used as the irradiation source for the analysis of several glass standards and soda–lime glass samples of interest to forensic scientists. Both lasers were kept at a constant energy of 20 mJ and focused using a 150 mm focal length lens. A series of experiments were also conducted to determine the importance of wavelength on lens-to-sample distance (LTSD) at each wavelength. It was determined that the optimal LTSD was found at ~ 1–2 mm focused into the surface for both wavelengths yet the crater depth resulting from the irradiation at 266 nm was significantly deeper (112 µm) than that from the 532 nm laser (41 µm). In addition, the analytical performance of LIBS on 5 NIST glasses and 6 automobile glasses at both wavelengths is reported. Good correlation for the quantitative analysis results for the trace and minor elements Sr, Ba and Al are reported along with the calibration curves, in most cases R2 > 0.95, using absolute intensities at various emission lines. Although 266 nm resulted in more mass removal, the 532 nm produced greater emission intensities. A slightly higher plasma density was determined for irradiation by 532 nm using the Stark broadening technique in comparison to the 266 nm irradiation.  相似文献   

4.
The investigation of a hyphenated technique combining laser-induced breakdown spectrometry (LIBS) with laser-induced fluorescence (LIF) for the analysis of heavy metals in soils is described. In order to evaluate the applicability of the technique for fast in-situ analytical purposes, measurements were performed at atmospheric pressure. The plasma radiation was detected using a Paschen–Runge spectrometer equipped with photomultipliers for the simultaneous analysis of 22 different elements. The photomultiplier signals were processed by a fast gateable multichannel integrator. Calibration curves were recorded using a set of spiked soil samples. Limits of detection were derived from these curves for As (3.3 μg/g), Cd (6 μg/g), Cr (2.5 μg/g), Cu (3.3 μg/g), Hg (84 μg/g), Ni (6.8 μg/g), Pb (17 μg/g), Tl (48 μg/g) and Zn (98 μg/g) using the LIBS signals. LIBS-LIF measurements were performed for Cd and Tl. The excitation wavelength as well as the detected fluorescence wavelength for Cd was 228.8 nm. Alternatively, Tl was excited at 276.8 nm, where the observed fluorescence wavelength was 351.9 nm. The calibration curves based on the LIF signals showed significantly improved limits of detection of 0.3 and 0.5 μg/g for Cd and Tl, respectively.  相似文献   

5.
Laser-induced breakdown thresholds for several pure metals were determined using a nanosecond laser. A Q-switched pulsed Nd:YAG laser operating at infrared (1064 nm), visible (532 nm) and ultraviolet (266 nm) wavelengths has been used. The plasma was generated by focusing the Nd:YAG laser on the target in air at atmospheric pressure. The dispersed plasma light was detected using a two-dimensional intensified charge-coupled device (CCD) detector. The studied elements were chosen according to their different thermal and physical properties, particularly boiling point, melting point and thermal conductivity. The effect of wavelength on the plasma threshold has been discussed. Laser fluence thresholds in the ultraviolet were larger than those obtained using visible and infrared radiation, while the energy threshold is larger using infrared radiation. Correlations between the plasma threshold of metal targets and the melting point and boiling point at 266, 532 and 1064 nm have been established. The results indicate that thermal effects have an important influence on the ablation behavior of metals at the three wavelengths used.  相似文献   

6.
Two Nd:YAG lasers emitting at 532 nm were combined in the same direction (collinear beam geometry) for double-pulse laser-induced breakdown spectroscopy studies on aluminum samples at atmospheric pressure in air. The influence of the delay between the two laser pulses was investigated for the background emission, for lines detected in aluminum samples and for atmospheric lines with different detection systems (photomultiplier tube, Czerny–Turner spectrometer and echelle spectrometers). The optimization of the delay between the two laser pulses depended on the excitation energy levels of the emission lines: two optima of interpulse delays were observed in the collinear geometry. Different regimes of laser–plasma interactions were discussed depending on the interpulse delay for aluminum samples. Furthermore, the effect of the sampling geometry, in terms of lens-to-sample distance, focal length of the focusing lens, was studied to determine parameters influencing the single- and double-pulse scheme. Besides, the analytical performance of the system was evaluated to characterize the advantages of the double-pulse laser-induced breakdown spectroscopy in terms of improvement of sensitivity and reduction of self-absorption effect for aluminum samples.  相似文献   

7.
By using laser-induced heating, we prepared Au-Ag nanoalloys via three different procedures: (i) mixture of Au nanoparticles and Ag(+) ions irradiated by a 532 nm laser, (ii) mixture of Au and Ag nanoparticles irradiated by a 532 nm laser, and (iii) mixture of Au and Ag nanoparticles irradiated by a 355 nm laser. Procedure i is advantageous for the production of spherical alloy nanoparticles; in procedures ii and iii, nanoalloys with a sintered structure have been obtained. The morphology of the obtained nanoalloys depends not only on the laser wavelength but also on the concentration of nanoparticles in the initial mixture. When the total concentration of Ag and Au nanoparticles in the mixture is increased, large-scale interlinked networks have been observed upon laser irradiation. It is expected that this selective heating strategy can be extended to prepare other bi- or multi-metallic nanoalloys.  相似文献   

8.
An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced breakdown spectroscopy at different sample temperatures was achieved. The intensity and signal-to-noise ratio (SNR) changes of different characteristic spectral lines could be analyzed when the sample temperature changes. The evolution of plasma electron temperature and electron density with the sample temperature was analyzed through Boltzmann oblique line method and Stark broadening method. The cause of the radiation enhancement of laser-induced metal plasma was discussed. Experimental results demonstrated that the spectral intensity, SNR, the electron temperature and electron density of plasma are positively related to the sample temperature, and reach saturation at 100 ℃.  相似文献   

9.
Single and double pulse laser-induced breakdown spectroscopy (LIBS) was carried out on aluminum samples in air. In the case of double pulse excitation, experiments were conducted by using the same laser source operated at the same wavelength (1064 nm in most cases here presented). A lowering of the second pulse plasma threshold was observed, together with an overall enhancement in line emission for the investigated time delay between the two pulses (40–60 μs). The laser-induced plasma originated by a single and double pulse was investigated near ignition threshold with the aim to study possible dynamical mechanisms in different regimes. Currently available spectroscopic diagnostics of plasma, such as the line broadening and shift due Stark effects, have been used in the characterization in order to retrieve electron densities, while standard temperature measurements were based on Boltzmann plot. Plasma relevant parameters, such as temperature and electron density, have been measured in the plasma decay on a long time scale, and compared with crater shape (diameter and inferred volume). The comparison of double with single pulse laser excitation was carried out while keeping constant the energy per pulse; the influence of laser energy was investigated as well. Results here obtained suggest that use of the double pulse technique could significantly improve the analytical capabilities of LIBS technique in routine laboratory experiments.  相似文献   

10.
Combination of an ultrasonic nebulizer and plasma excitation sources for spectrochemical analysis offers desirable features of low detection limits, high sample throughput, wide dynamic range of operation, acceptable precision and accuracy, and simultaneous quantitative analytical capabilities. Moreover, the ultrasonic nebulizer does not require sample preconcentration. Recently we have developed a three-phase plasma arc (TPPA) for atomic emission spectrochemical analysis. In the present work, to increase the analytical utility of the three-phase plasma system, an ultrasonic nebulizer was used for sample introduction. The effects of the argon gas flow rate, current, excitation temperature have been studied. The analytical calibration curves are obtained for Ca, Cr, Fe, Mg and Mn, and detection limits have been calculated. The present technique is used to determine the concentration of the elements Ca, Cr, Fe, Mg and Mn in airborne samples.  相似文献   

11.
Open-path laser-induced plasma spectrometry has been studied for elemental analysis at a distance of 45 m from the target. The 230-mJ pulsed radiation of a Q-switched Nd:YAG laser at 1064 nm has been used to produce a plasma on the sample and light emission has been collected under an off-axis open-path scheme. Under such conditions, the main variables influencing the signal response such as beam focal conditions, laser incidence angle and laser penetration depth have been identified and diagnosed on the basis of spectral signal-to-noise ratio considerations. The incidence angle is critical beyond 60°. Crater morphology and ablation rates have been studied also. A semi-quantitative analysis of several stainless steel grades has been implemented using a pattern recognition algorithm, which allowed to discriminate successfully the samples on the basis of their variable content in alloying elements.  相似文献   

12.
由于含有偶氮苯染料侧基,聚(氨酯-酰亚胺)(PUI)对532nm的光具有较强的吸收.采用该波长的可见偏振脉冲激光(Nd∶YAG激光器的倍频输出),在PUI薄膜表面制备了激光诱导周期性表面微结构(LIPSS).研究了染料引入方式以及染料侧基含量对微结构形成过程的影响,讨论了入射角、激光脉冲数、激光脉宽等激光辐射条件对LIPSS形成过程以及对微结构形貌和周期性的影响.  相似文献   

13.
The qualitative and quantitative analysis of soil samples collected from Sialkot, Pakistan (which contains leather industrial plants), has been performed using laser-induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometry (LA-TOF-MS). The focused beam of a Q-switched Nd: YAG laser (532?nm) was used to ablate the soil samples in air at atmospheric pressure. The optical emission spectra demonstrate the presence of the spectral lines of Si, Fe, Al, Ca, Ti, K, Cr, Mg, Na, Ba, and Li in all of the samples. The emission lines intensities, electron number densities, and excitation temperatures were significantly enhanced in the presence of an external 0.3 T magnetic field applied perpendicular to the plasma plume. A maximum enhancement factor of approximately 8 was observed in the emission intensity. The emergence of several additional lines has also been detected using the magnetic field-assisted LIBS approach. The elemental composition determined using calibration-free laser-induced breakdown spectroscopy (CF-LIBS), with and without magnetic field, reveals that the external magnetic field only adjusts the laser-generated plasma dynamics without affecting the quantitative analysis of the samples. Importantly, the toxic and heavy elements such as chromium and barium were detected and quantified in all of the soil samples by both of these techniques. The variations in the compositional analysis using CF-LIBS with and without the applied magnetic field and LA-TOF-MS were less than 10%.  相似文献   

14.
A robust and sensitive method using high turbulence liquid chromatography (HTLC) online extraction with tandem mass spectrometry (MS/MS) for the determination of MK-0431 in human plasma was developed and validated to support the clinical studies. This HTLC online extraction method eliminated the time-consuming offline sample extraction procedures and significantly increased productivity. A narrow bore large particle size reversed-phase column (Cyclone, 50 x 1.0 mm, 60 microm) and a BDS Hypersil C18 column (30 x 2.1 mm, 3 microm) were used as extraction and analytical columns, respectively. The linear dynamic range of the calibration curve was 0.5 to 1000 ng/mL. Intraday validation was conducted using five calibration curves prepared in five lots of human control plasma, and the intraday precision (RSD%) was from 2.4 to 9.0% and the accuracy was from 98.0 to 103% of the nominal value. The intraday precision (RSD%, n = 5) for plasma quality control (QC) samples varied from 2.0 to 5.3% and accuracy from 103 to 105% of the nominal value. The interday precision (RSD%) for 100 sets of plasma QC samples in 29 analytical runs varied from 6.3 to 9.0% and the accuracy from 98.8 to 104% of the nominal value. No significant difference was observed between the interday and intraday precision and accuracy of the QC samples.  相似文献   

15.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

16.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

17.
Single- and double-pulse laser-induced breakdown spectroscopy techniques applied to the analysis of pressed pellets of silicate raw materials were compared in terms of precision, sensitivity and limits of detection. Two Nd:YAG lasers (1064 and 532 mm) in an orthogonal configuration with a reheating arrangement have been employed. The main factors influencing system performance were optimized, i.e. laser pulse energies and interpulse separation. The behaviour of plasma temperature was studied over a period of time and calibration curves for Mg were constructed for both the single and double-pulse setup. When comparing the single- and double-pulse techniques, limits of detection of Si and Mg for the double-pulse technique were found to be 10 times lower.  相似文献   

18.
The fourth harmonic wavelength at 266 nm as well as the fundamental radiation at 1.06 m of a pulsed Nd: YAG laser has been used for ablation of solid samples. Using different buffer gases and different samples, the ablated masses and plasma temperatures obtained with the two different laser wavelengths are compared. The analytical application of 266-nm laser pulses is studied by the measurement of aluminium and manganese in steel and boraxglass (Na2B4O7) samples.  相似文献   

19.
A theoretical study of atmospheric extinction mechanisms of optical radiation (molecular/aerosol scattering and absorption) has been carried out in order to assess their influences on stand-off laser-induced breakdown spectroscopy (LIBS) measurements. The atmospheric extinction of laser radiation at wavelengths commonly used in laser-induced breakdown spectroscopy (1064 nm and 532 nm) and of the laser-induced breakdown spectroscopy plasma emission beyond 250 nm is small compared to the attenuation with range due to the inverse square law. The fundamental problem with light propagation through the atmosphere is that the atmospheric transmittance does not remain constant within the whole spectral interval, and that this variation results in a change in the spectral distribution of the light received by the detector. Knowledge of atmospheric transmittance would allow for compensation of this effect.  相似文献   

20.
Inductively coupled plasma atomic emissionspectrometry (ICP-AES) has been applied as a rapid and routine method for the analysis of process electrolytes in the electrorefining of copper. Antimony, arsenic, bismuth and copper have been selected as major electrolyte constituents. For these elements profound statistical studies of spectral and interelement effects have been carried out. For As, Bi and Sb two analyte wavelengths have been selected, and for Cu one relatively insensitive analyte line has been chosen due to the high Cu concentration in samples. Best analytical lines were: As at 193.759 nm, Bi at 306.772 nm, Sb at 206.833 nm and Cu at 216.953 nm. Multiple linear regression proved to be very capable in the search of the best analytical wavelength and identifying interfering elements. Using simple acid based standards all elements investigated can be determined separately in complicated matrices with satisfactory results. Differences between true values and measured values can be partly eliminated by appropriate calculational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号