首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work four different commercially available enzyme-linked immunosorbent assays (ELISA) (from Japan EnviroChemicals, Ltd., Tokyo, Japan) were evaluated in terms of performance for the rapid screening of estrogens in different water matrices, including natural and spiked samples from urban wastewater, river water and ground water. All four test kits are based on monoclonal antibodies. The compounds detected by these immunoassays are (1) 17-β-estradiol, (2) estrone, (3) 17-α-ethynyl estradiol and (4) estrogens in general, with high recognition properties for 17-β-estradiol, estrone and estriol. Standards were prepared in water containing 10% (v/v) methanol. The IC 50 (corresponding to the 50% of the effective concentration) values, the dynamic ranges, and the limits of detection of the ELISA kits were 0.060–0.304 μg/L, 0.05–5 μg/L and 0.05 μg/L, respectively. All samples were extracted by solid-phase extraction (SPE) beforehand, and the evaluation was carried out by comparing the results obtained by ELISA with those obtained by HPLC–MS/MS using a triple quadrupole (QqQ) instrument. In addition, two different solid-phase extraction procedures were carried out and compared. Except for moderate overestimation in the results observed with the ELISA kits in the analysis of complex wastewater samples, the results obtained using all of the tested techniques were generally in very good agreement.   相似文献   

2.
Estrone is one of the important potential endocrine-disrupting compounds, and the sensitive and reliable analytical methods for the determination of estrone are required for the assurance of human health. In this paper, using estrone as template molecule, 3-aminopropyltriethoxysilane as function monomer, and tetraethoxysilicane as cross-linker, a highly selective molecularly imprinted microsphere was synthesized by surface molecular imprinting technique combined with a sol–gel process. The imprinted material was characterized by the Fourier transform infrared and static adsorption experiments, and the results showed that it exhibited good recognition and selective ability for estrone. A novel method for separation and determination of trace estrone in environmental sample was developed using on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography. With a sample loading flow rate of 2.6 mL min−1 for a 9.6-min extraction, the enrichment factor obtained by the slopes of the linear portion in comparison with the direct injection of 10 μL standard sample solution was 1,045. The detection limit (S/N = 3) was 5.7 ng L−1, and the relative standard deviations for nine replicate extractions of 5.0 μg L−1 estrone was less than 10.0%. This method was evaluated for quantitative determination of estrone in well and lake water samples spiked at two levels (0.5 and 1.0 μg L−1) with recoveries ranging from 86% to 95%.   相似文献   

3.
Monoclonal antibodies against zearalenone (ZEA) were raised in mice according to the hybridoma technology and applied in different immunochemical techniques. More specifically, three formats based on the competitive direct enzyme immunoassay principle were developed: an enzyme-linked immunosorbent assay (ELISA), a flow-through gel-based immunoassay column and a flow-through membrane-based immunoassay. In ELISA, the 50% inhibitory concentration (IC50) was 0.8 ng/mL, and the limit of detection for ZEA standard solutions was 0.1 ng/mL. The antibodies showed a high ZEA (100%) and α-zearalenol (α-ZOL) (69%) recognition, while cross-reactivities with α-zearalanol, zearalanone, β-zearalenol and β- zearalanol were 42%, 22%, <1% and <1%, respectively. For standard solutions, a cut-off level at 10 ng/mL could be established for the gel- and membrane-based enzyme immunoassays. Assay time of both non-instrumental tests was 25 min for 10 samples. By including a simple sample extraction procedure, the methods were applied to wheat with IC50s in ELISA of 80 and 120 μg/kg (dilution up to 5% and 15% (v/v) of wheat matrix, respectively). The cut-off level of the gel- and membrane-based immunoassays was established at 100 μg/kg. Potentials and limitations of the developed methods were compared. The possible application for multi-mycotoxin analysis of the ELISA method based on a single monoclonal antibody was investigated. Therefore, principal component analysis and partial least squares regression data modelling were used to separate the immunoassay responses of two cross-reactants (ZEA and α-ZOL).   相似文献   

4.
Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 μg L−1 for PNP, 0.20 μg L−1 for PAP, and 0.16 μg L−1 for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina. Figure Schematic representation of the cloud point extraction process.  相似文献   

5.
A new approach for headspace sorptive extraction is presented and demonstrated for the determination of 12 chlorobenzenes in water samples. It consists of a silicone tube (15-mm length) arranged around a stainless steel rod. This device is fixed on a septum cap and exposed to the headspace of 50 mL of a salt-saturated water sample. After extraction (60-min optimized extraction time), thermodesorption is carried out by direct insertion of the silicone tube into the thermodesorption-gas chromatography-mass spectrometry system. Desorption of the analytes is performed at 250 °C for 5 min with a gas flow of 50 mL/min. Repeatability (relative standard deviation 5–10%), extraction yields (9–46%), enrichment factors (129–657), and detection limits (0.002–0.012 μg/L) were determined and four real water samples were analyzed with the headspace tube extraction. The results were verified by standard addition. A comparison of headspace tube extraction with other headspace enrichment techniques underlined the high extraction capacity of the proposed method. A big advantage of tube extraction is the low cost of the silicone material. The tubes can be discarded after single use, avoiding carryover problems and cross-contamination. Figure Scheme of the HS-tube extraction and thermodesorption system  相似文献   

6.
Determination of protein surface excess is an important way of evaluating the properties of biomaterials and the characteristics of biosensors. A single-molecule counting method is presented that uses a standard fluorescence microscope to measure coverage of a liquid/solid interface by adsorbed proteins. The extremely low surface excess of lysozyme and bovine serum albumin (BSA), in a bulk concentration range from 0.3 nmol L−1 (0.02 μg mL−1) to 3 nmol L−1 (0.2 μg mL−1), were measured by recording the counts of spatially isolated single molecules on either hydrophilic (glass) or hydrophobic (polydimethylsiloxane, PDMS) surfaces at different pH. The differences observed in amounts of adsorbed proteins under different experimental conditions can be qualitatively explained by the combined interactions of electrostatic and hydrophobic forces. This, in turn, implies that single-molecule counting is an effective way of measuring surface coverage at a liquid/solid interface. Figure Adsorption fraction of proteins on different surfaces changed with pH.  相似文献   

7.
A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 μg/L for cyclamate, about 40 μg/L for acesulfame and saccharin, and less than 1 μg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 μg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin ≈ cyclamate > sucralose. Figure Some artificial sweeteners are excreted unchanged and in particular acesulfame is a perfect tracer for municipal waste water Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Pancuronium bromide (PCBr) inhibition effect on enzyme cholinesterase from pooled human serum (Che, EC 3.1.1.8 acylcholine acylhydrolase) was used for development of a spectrophotometric kinetic method for PCBr determination in human serum and urine. Optimal conditions for the basic and inhibitor reactions were established: pH=7.7 and substrate concentration c(benzoylcholine chloride)=1.33 mmol/L. Kinetic parameters were also determined: Michaelis-Menten’s constant KM=0.40 mmol/L, maximal reaction rate Vmax=52.2 μmol/L min, inhibition constant Ki=0,56 μmol/L and IC50=1.31 μmol/L. Linear dependence between the reaction rate and inhibitor concentration exists in PCBr concentration range 8.20–68.25 nmol/L, which corresponds to the real sample concentrations from 0.328 to 2.730 μmol/L. The method detection and quantification limits were 2.01 nmol/L and 6.67 nmol/L, respectively. Precision of the method was tested for three pancuronium concentrations (10.70, 29.35 and 51.25 nmol/L). Relative standard deviation (RSD) was in the range 0.15–7.45%. Accuracy was examined by standard addition method. Influence of the substances usually present in serum and urine on the reaction rate was tested. The developed method was applied for PCBr content determination in serum model samples, urine model samples and in urine taken during surgery. The method has good sensitivity, accuracy, precision and it is suitable for clinical practice.   相似文献   

9.
A sensitive and robust analytical method for the quantification of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate in natural water has been developed on the basis of a derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), solid-phase extraction (SPE) and liquid chromatography followed by electrospray tandem mass spectrometry (LC-ESI-MS/MS). In order to maximize sensitivity, the derivatization was optimized regarding organic solvent content, amount of FMOC-Cl and reaction time. At an acetonitrile content of 10% a derivatization yield of 100% was reached within two hours in groundwater and surface water samples. After a twofold dilution the low acetonitrile content allowed solid-phase extraction of a sample of originally 80 mL over 200 mg Strata-X cartridges. In order to decrease the load of the LC column and mass spectrometer with derivatization by-products (e.g., 9-fluorenylmethanol FMOC-OH), a rinsing step was performed for the SPE cartridge with dichloromethane. Acidification of the sample and addition of EDTA was used to minimize complexation of the target compounds with metal ions in environmental samples. Due to the large sample volume and the complete FMOC-OH removal, limits of quantification of 0.7 ng/L, 0.8 ng/L and 2.3 ng/L were achieved in surface water for glyphosate, AMPA and glufosinate, respectively. The limits of detection were as low as 0.2 ng/L, 0.2 ng/L and 0.6 ng/L for glyphosate, AMPA and glufosinate, respectively. Surface water and ground water samples spiked at 2 ng/L showed recoveries of 91–107%. Figure LC-MS/MS chromatogram of a water sample from a remote alpine region spiked at 1 ng/L  相似文献   

10.
A rapid easy-to-use immunoassay was optimised for the non-instrumental detection of ochratoxin A (OTA) in beer. The analytical method involves preconcentration on the immunoaffinity layer inside a column followed by direct competitive ELISA detection in the same layer. The visual cut-off value, i.e. the lowest OTA concentration resulting in no colour development, was 0.2 μg L-1. Assay validation was performed using samples spiked with OTA. Thirty-seven naturally contaminated samples were screened with the gel-based method developed and no false-negative results were obtained. The method described offers a simple, rapid and cost-effective screening tool, thus contributing to better health protection of consumers. Figure Gel-based immunoassay of spiked beer samples.  相似文献   

11.
A previously developed fluorescence sensing platform, combining spatial illumination using electroluminescence (EL) semiconductor strips with charge coupled device (CCD)-based detection (EL-CCD), was adapted to a new 96-well chip for colorimetric immunological assays, enhancing the capabilities of the EL-CCD platform. The modified system was demonstrated using a colorimetric-based enzyme linked immunosorbent assay (ELISA) for detection of staphylococcal enterotoxin B (SEB). Limits of detection (LODs) of 3.9 ng/mL (±2.4 ng/mL) SEB were determined with the ELISA chip measured using the EL-CCD platform, following a standard 4-h ELISA protocol. The LODs were comparable to those obtained using standard 96-well ELISA plates measured using a standard laboratory 96-well plate reader. The miniature 96-well ELISA chip however required as little as 5-μL samples, representing a tenfold reduction in sample volume compared to a standard 96-well ELISA plates. The ELISA chip also demonstrated detection of SEB spiked into various food matrices (milk, mushrooms, and mayonnaise) using limited-to-no sample preparation, with LODs ranging from 3.9 to 18.5 ng/mL depending on the matrix. The EL-CCD platform is versatile, capable of multi-mode detection (e.g., fluorescent and colorimetric along with solution and solid phase assays), and could readily be applied to other field portable or point-of-care applications. Figure Detection of SEB using miniature ELISA chips coupled with a portable electroluminiscent-charge couple device (EL-CCD) detection system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The fatty acid esters of 3-(N-phenylamino)propane-1,2-diol (PAP) are biomarkers of toxic oil batches that caused toxic oil syndrome (TOS), an intoxication that caused over 400 deaths and affected 20,000 people in Spain in 1981. PAP esters are converted into PAP by human pancreatic lipase. The in vivo biotransformation of PAP in two mouse strains generated potentially toxic metabolites. Here we report an enzyme-linked immunosorbent assay (ELISA) for PAP detection incorporating antibodies generated using PAP-hapten derivatives 1 and 2. The immunizing haptens were designed to recognize the phenylamino and hydroxymethylene moieties of the PAP structure. The antisera raised against 1-HCH showed greater affinity for free PAP, as demonstrated in competitive experiments using either 1-BSA or 2-BSA as coating antigens. The developed ELISA detects PAP at a threshold of 130 μg L−1 and can be used over a wide range of pH and ionic strength values. The assay can be applied to human urine samples, after a simple treatment method, with good recovery according to the correlation obtained when analyzing blind spiked urine samples. Figure Development of an ELISA for PAP in human urine  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection for the quantification of vancomycin in human plasma was developed and validated. The method includes an extraction of vancomycin by deproteinization with acetonitrile. The analyses were carried out at 258 nm as the emission wavelength while exciting at 225 nm on a reversed-phase column (30 cm × 4 mm i.d. × 10 μm Waters Associates μBondapak C18) using a mobile phase composed of methanol and phosphate buffer at pH 6.3. Vancomycin was quantitatively recovered from human plasma samples (>96%) with high values of precision. The separation was completed within 27 min. The calibration curve was linear over the range from 5 to 1,000 ng/mL with the detection and quantification limits of 2 ng/mL and 5 ng/mL, respectively. This method is suitable for the routine assay of plasma samples. Figure The effect of the deproteinization solvent on the signal of the interference peak at retention time of 15.0 min. The peak which interferes with the peaks of Erythromycin and Vancomycin has been disappeared by using 2 mL acetonitrile as the deproteinization solvent.  相似文献   

14.
In this paper, we describe the preparation and the evaluation of a porous graphitic carbon (PGC) column coated with a new dinaphthyl derivative of neamine for chiral ligand-exchange (LE) chromatography. It was shown that the graphitic surface/dinaphthyl anchor system efficiently (1.15 μmol/m2) and stably (three months of intensive use) adsorbs the neamine template onto the chromatographic support. The resulting coated PGC stationary phase showed appreciable LE-based enantioselective properties towards several native amino acids. Chromatographic separation of methionine enantiomers using a dinaphtyl neamine-based ligand-exchange chiral stationary phase  相似文献   

15.
To identify the explosive used in a terrorist attack, or to obtain an early sign of environmental pollution it is important to use simple and rapid assays able to detect analytes at low levels, possibly on-site. This is particularly true for TNT (2,4,6-trinitrotoluene), one of the most employed explosives in the 20th century and at the same time, because of its toxicity, a well known pollutant. In this work we describe the development of an indirect competitive ELISA with chemiluminescent detection (CL-ELISA) and of a lateral-flow immunoassay (LFIA) based on colloidal gold nanoparticle labels. A commercially available monoclonal antibody was used and 13 specially synthesized conjugates were tested. We optimized the assay by determining the optimal concentration of monoclonal antibody and conjugates and the influence of various non-specific factors such as: tolerance to organic solvents at different concentrations, the washing and competitive step time, and the cross-reactivity with related compounds. The sensitivity and reproducibility of the CL-ELISA were good (LOD and IC50 values in the ng mL−1 range, and CV value about 7%). It has been applied to real samples of various materials involved in a controlled explosion of an “improvised explosive device”. Three extraction procedures were tested on these samples, all employing methanol as the solvent. The lateral flow immunoassay (LFIA), developed by using the same immunoreagents, reached a detection limit of 1 μg mL−1 when tested on the same samples analysed by CL-ELISA.   相似文献   

16.
The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA–bovine thyroglobulin conjugate and OA–N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 μl min−1; flow rate, 25 μl min−1. An assay action limit of 126 ng g−1 was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g−1, which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of <10%. The chip surface developed was shown to be highly stable, allowing more than 50 analyses per channel. When the concentrations of OA determined with the biosensor method were compared with the values obtained by LC–MS in contaminated shellfish samples, the correlation between the two analytical methods was found to be highly satisfactory (r 2 = 0.991). Figure Biacore  相似文献   

17.
In-torch LA–ICP–MS was implemented into an in-house-built ICP–TOFMS system. The fast data acquisition capabilities of the new configuration allowed simultaneous multi-element measurement and readout of in-torch LA–ICP–MS signals with 30 μs time resolution. The measurements confirmed previously observed fine structures of in-torch generated signals and provided new insights in the dynamic processes in the plasma on a microsecond time scale. The new setup is described in detail and first figures of merit are given. Figure Time dependent multi element signal after laser ablation in the torch of an ICP-TOFMS instrument  相似文献   

18.
Voriconazole is a very potent antifungal agent used to treat serious fungal infections (candidiasis); it is also the therapy of choice for aspergillosis. After standard dosing, several factors affect exposure of voriconazole, resulting in large variability and demanding further elucidation of drug distribution. For measurements at the site of action, microdialysis is considered to be an outstanding minimally invasive method. For determination of voriconazole in microdialysate and human plasma a new, efficient, reliable, and robust HPLC assay using UV detection at 254 nm has been developed and validated. After simple sample preparation using acetonitrile for plasma and for microdialysate, 20 μL were injected and separated on an RP-18 column. The chromatographic run time was less than 4 min. Overall, the assay showed high precision (CV 93.9 to 99.5%) and accuracy (RE −96.7 to +107%) for both matrices. Of the 36 drug products typically co-administered with voriconazole, none except ambroxol interfered with its peak signal, and this interference was successfully managed. In summary, the method is highly suitable for application in (pre)clinical microdialysis studies, e.g., of critically ill patients with invasive mycoses. Figure Microdialysis probe situated in the interstitial space fluid containing voriconazole drug molecules (magenta coloured) extracting an important target site representative matrix (microdialysate) [Courtesy of CMA]  相似文献   

19.
Enzymatically cleaved glycans from sub-milligram quantities of erythropoietin (EPO) and ovalbumin have been analyzed, without further purification, by two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy. At NMR sample concentrations below 50 μmol L−1 the major components of the oligosaccharide fractions could be distinguished by their anomeric proton chemical shift and their size-dependent diffusion coefficients. Figure 1H NMR diffusion decay curves of anomeric protons in the EPO glycan fraction  相似文献   

20.
This article describes the use of microfluidic paper-based analytical devices (μPADs) to perform quantitative chemical assays with internal standards. MicroPADs are well-suited for colorimetric biochemical assays; however, errors can be introduced from the background color of the paper due to batch difference and age, and from color measurement devices. To reduce errors from these sources, a series of standard analyte solutions and the sample solution are assayed on a single device with multiple detection zones simultaneously; an analyte concentration calibration curve can thus be established from the standards. Since the μPAD design allows the colorimetric measurements of the standards and the sample to be conducted simultaneously and under the same condition, errors from the above sources can be minimized. The analytical approach reported in this work shows that μPADs can perform quantitative chemical analysis at very low cost.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号