首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The silyloxycyclopentadienyl hydride complexes [Re(H)(NO)(PR(3))(C(5)H(4)OSiMe(2)tBu)] (R=iPr (3 a), Cy (3 b)) were obtained by the reaction of [Re(H)(Br)(NO)(PR(3))(2)] (R=iPr, Cy) with Li[C(5)H(4)OSiMe(2)tBu]. The ligand-metal bifunctional rhenium catalysts [Re(H)(NO)(PR(3))(C(5)H(4)OH)] (R=iPr (5 a), Cy (5 b)) were prepared from compounds 3 a and 3 b by silyl deprotection with TBAF and subsequent acidification of the intermediate salts [Re(H)(NO)(PR(3))(C(5)H(4)O)][NBu(4)] (R=iPr (4 a), Cy (4 b)) with NH(4)Br. In nonpolar solvents, compounds 5 a and 5 b formed an equilibrium with the isomerized trans-dihydride cyclopentadienone species [Re(H)(2)(NO)(PR(3))(C(5)H(4)O)] (6 a,b). Deuterium-labeling studies of compounds 5 a and 5 b with D(2) and D(2)O showed H/D exchange at the H(Re) and H(O) positions. Compounds 5 a and 5 b were active catalysts in the transfer hydrogenation reactions of ketones and imines with 2-propanol as both the solvent and H(2) source. The mechanism of the transfer hydrogenation and isomerization reactions was supported by DFT calculations, which suggested a secondary-coordination-sphere mechanism for the transfer hydrogenation of ketones.  相似文献   

2.
Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.  相似文献   

3.
An efficient method for generation of alpha-lambda3-iodanyl ketones from (Z)-(2-acetoxyvinyl)(phenyl)-lambda3-iodanes was developed. The method involves ester exchange of (Z)-2-acetoxyvinyl-lambda3-iodanes with methanol in the presence of triethylamine. alpha-lambda3-Iodanyl ketones react with a variety of nucleophiles such as halides, thiols, phosphines, phosphinic acids, and phosphates, under the conditions which produce alpha-functionalized carbonyl compounds probably via an S(N)2 pathway.  相似文献   

4.
《Tetrahedron: Asymmetry》2003,14(7):823-836
Intramolecular cyclopropanation of alkenyl α-diazoacetates and alkenyl diazomethyl ketones was examined by using optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes as catalysts. For the cyclization of 2-alkenyl α-diazoacetates, Co(II)(salen) complexes 9 and 10 were found to be superior catalysts to the corresponding (ON+)Ru(II)(salen) complexes 4 and 5. On the other hand, (ON+)Ru(II)(salen) complex 2 was found to be the catalyst of choice for the cyclization of 3-alkenyl diazomethyl ketones, and complex 4 was found to be a good catalyst for the cyclization of (E)-4-alkenyl diazomethyl ketones. The present study demonstrates that metallosalen complexes, especially optically active (ON+)Ru(II)(salen) and Co(II)(salen) complexes, can serve as efficient catalysts for the cyclization of alkenyl diazocarbonyl compounds, if a suitable salen ligand is used as the chiral auxiliary.  相似文献   

5.
Highly enantioselective 1,4-addition of organosiloxanes to alpha,beta-unsaturated carbonyl compounds was found to be catalyzed by a chiral rhodium complex generated from [Rh(cod)(MeCN)(2)]BF(4) and (S)-BINAP. Both (E)- and (Z)-1-alkenyl groups as well as aryl groups can be introduced enantioselectively into the beta-position of a variety of ketones, esters, and amides. [reaction--see text]  相似文献   

6.
The reaction of [RuCl(2)(p-cymene](2) with Ag-N-heterocyclic carbene (NHC) complexes yields a series of [(p-cymene)Ru(NHC)] complexes (2a-f). All synthesised compounds were characterized by elemental analysis, NMR spectroscopy and the molecular structure of 2a was determined by X-ray crystallography. All complexes have been tested as catalysts for the transfer hydrogenation of aromatic ketones, showing excellent activity in this reaction.  相似文献   

7.
Tyson EL  Farney EP  Yoon TP 《Organic letters》2012,14(4):1110-1113
α,β-Unsaturated 2-imidazolyl ketones undergo [2 + 2] cycloaddition with a variety of Michael acceptors upon irradiation with visible light in the presence of Ru(bpy)(3)(2+). Cleavage of the imidazolyl auxiliary from the cycloadducts affords cyclobutane carboxamides, esters, thioesters, and acids that would not be accessible from direct cycloaddition of the corresponding unsaturated carbonyl compounds.  相似文献   

8.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with 4-hexen-3-one, 5-hexen-2-one, and 3-penten-2-one have been determined at 298 ± 2 K and atmospheric pressure of air. Rate coefficients for the compounds were determined using a relative kinetic technique with different reference compounds. The experiments were performed in a large photoreactor (480 L) using in situ FTIR spectroscopy to monitor the decay of reactants. From the different measurements the following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been determined: k(1)(OH + 4-hexen-3-one) = (9.04 ± 2.12) × 10(-11), k(2)(OH + 5-hexen-2-one) = (5.18 ± 1.27) × 10(-11), k(3)(OH + 3-penten-2-one) = (7.22 ± 1.74) × 10(-11), k(4)(Cl + 4-hexen-3-one) = (3.00 ± 0.58) × 10(-10), k(5)(Cl + 5-hexen-2-one) = (3.15 ± 0.50) × 10(-10) and k(6)(Cl + 3-penten-2-one) = (2.53 ± 0.54) × 10(-10). The reactivity of the double bond in alkenes and unsaturated ketones at 298 K toward addition of OH radicals and Cl atoms are compared and discussed. In addition, a correlation between the reactivity of the unsaturated ketones toward OH radicals and the HOMO of the compounds is presented. On the basis of the kinetic measurements, the tropospheric lifetimes of 4-hexen-3-one, 5-hexen-2-one, and 3-penten-2-one with respect to their reaction with hydroxyl radicals are estimated to be between 2 and 3 h.  相似文献   

9.
Miura T  Kiyota K  Kusama H  Lee K  Kim H  Kim S  Lee PH  Iwasawa N 《Organic letters》2003,5(10):1725-1728
[reaction: see text] Indium-mediated allenylation of alpha,beta-unsaturated ketones in the presence of tert-butyldimethylsilyl triflate and dimethyl sulfide gives 6-siloxy-1,2,5-trienes, which undergo W(CO)(5)(L)-catalyzed 5-endo cyclization to give the corresponding cyclopentene derivatives in good yield. Furthermore, this novel W(CO)(5)(L)-catalyzed cyclization of allenyl silyl enol ethers proceeds in a 6-endo manner when 5-siloxy-1,2,5-trienes are employed as a substrate. In these reactions, effective electrophilic activation of allenyl compounds for attack by silyl enol ethers is achieved using a catalytic amount of W(CO)(6).  相似文献   

10.
Using abiotic thiol reactivity (EC50) and Tetrahymena pyriformis toxicity (IGC50) data for a group of halo-substituted ketones, esters and amides (i.e. SN2 electrophiles) and related compounds a series of structure-activity relationships are illustrated. Only the alpha-halo-carbonyl-containing compounds are observed to be thiol reactive with the order I > Br > Cl > F. Further comparisons disclose alpha-halo-carbonyl compounds to be more reactive than non-alpha-halo-carbonyl compounds; in addition, the reactivity is reduced when the number of C atoms between the carbonyl and halogen is greater than one. Comparing reactivity among alpha-halo-carbonyl-containing compounds with different beta-alkyl groups shows the greater the size of the beta-alkyl group the lesser the reactivity. A comparison of reactivity data for 2-bromoacetyl-containing compounds of differing dimensions reveals little difference in reactivity. Regression analysis demonstrates a linear relationship between toxicity and thiol reactivity: log (IGC(50)(-1)) = 0.848 log (EC(50)(-1)) + 1.40; n=19, s=0.250, r2=0.926, r2(pred)=0.905, F=199, Pr > F=0.0001.  相似文献   

11.
When the reaction of aromatic ketones with arylboronates (arylboronic acid esters) using RuH(2)(CO)(PPh(3))(3) (3) as a catalyst was conducted in toluene, the corresponding arylation product was obtained in moderate yields. In this case, a nearly equivalent amount of a benzyl alcohol derived from a reduction of an aromatic ketone was also formed. The use of aliphatic ketones, such as pinacolone and acetone, as an additive or a solvent dramatically suppressed the reduction of the aromatic ketones and, as a result, ortho-arylation products were obtained in high yield based on the aromatic ketones. In these reactions, the aliphatic ketone functioned as a scavenger of ortho-hydrogens of the aromatic ketones and the B(OR)(2) moiety of the arylboron compound (HB species). A variety of aromatic ketones, such as acetophenones, acetonaphthones, tetralones, and benzosuberone, could also be used in this coupling reaction. Several arylboronates containing electron-donating (NMe(2), OMe, and Me) and -withdrawing (CF(3) and F) groups were also applicable to this coupling reaction. Intermolecular competitive reaction using pivalophenone-d(0)() and -d(5) and intramolecular competitive reaction using pivalophenone-d(1) were carried out using 3 as a catalyst. The k(H)/k(D) value for the intermolecular competitive reaction was substantially different, compared with intramolecular competitive reaction. This strongly suggests the production of an intermediate where the ketone carbonyl is coordinated to the ruthenium involved in this catalytic reaction. (1)H and (11)B NMR studies using 2'-methylacetophenone, phenylboronate (2), and pinacolone (6) indicate that 6 functions effectively as a scavenger of the HB species.  相似文献   

12.
Wille U 《Organic letters》2000,2(22):3485-3488
SO(4)(*)(-) generated by the Fenton redox system S(2)O(8)(2)(-)- Fe(2+) induces a novel anionic, transannular, self-terminating, oxidative radical cyclization in the reactions with the ten-membered cycloalkyne 1 and the cycloalkynone 7, yielding the bicyclic ketones 5 and 6 or the alpha,beta-epoxy ketones 8 and 9, respectively. In these reactions SO(4)(*)(-) acts as an oxygen transfer reagent and can thus be considered as a donor of atomic oxygen in solution.  相似文献   

13.
Cho HY  Yu Z  Morken JP 《Organic letters》2011,13(19):5267-5269
In the presence of catalytic Ni(cod)(2) and P(t-Bu)(3), ketones, dienes, and B(2)(pin)(2) undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product.  相似文献   

14.
Reaction of a chiral RuCl2(diphosphine)(1,2-diamine) complex and NaBH4 forms trans-RuH(eta1-BH4)(diphosphine)(1,2-diamine) quantitatively. The TolBINAP/DPEN Ru complex has been characterized by single crystal X-ray analysis as well as NMR and IR spectra. The new Ru complexes allow for asymmetric hydrogenation of simple ketones in 2-propanol without an additional strong base. Various base-sensitive ketones are convertible to chiral alcohols in a high enantiomeric purity with a substrate/catalyst ratio of up to 100 000 under mild conditions. Configurationally unstable 2-isopropyl- and 2-methoxycyclohexanone can be kinetically resolved with a high enantiomer discrimination. This procedure overcomes the drawback of an earlier method using RuCl2(diphosphine)(diamine) and an alkaline base, which sometimes causes undesired reactions such as ester exchange, epoxy-ring opening, beta-elimination, and polymerization of ketonic substrates.  相似文献   

15.
beta-Trifluoromethyl alpha,beta-unsaturated esters were efficiently prepared by reactions of fluorine-containing ketones with diazo compounds via metalloporphyrin-catalyzed olefination in the presence of triphenylphosphine. The commercially available Fe(III)(TPP)Cl (TPP: tetraphenylporphyrin) is effective for catalyzing the olefination of a variety of trifluoromethyl ketones with different diazoacetate esters under mild conditions. The reactions proceeded with high yields (up to 95% isolated yield) and high stereoselectivity (up to 99% (E)-selectivity).  相似文献   

16.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

17.
Reaction of N-(2-naphthyl)formimidoyl-3-pyridine with cyclic ketones leads to the formation of 1,2-cycloalkyleno-3-(3-pyridyl)benzo[f]quinolines. Aminoketones, namely, 2-[(3-pyridyl)(2-naphthylamino)methyl]cycloalkanones, are intermediates in this reaction. The absorption-luminescence, PMR, and mass spectra of these newly synthesized compounds have been investigated.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1409–1413, October, 1989.  相似文献   

18.
The silyloxycyclopentadienyl hydride complexes [Re(H)(NO)(PR3)(C5H4OSiMe2tBu)] (R=iPr ( 3 a ), Cy ( 3 b )) were obtained by the reaction of [Re(H)(Br)(NO)(PR3)2] (R=iPr, Cy) with Li[C5H4OSiMe2tBu]. The ligand–metal bifunctional rhenium catalysts [Re(H)(NO)(PR3)(C5H4OH)] (R=iPr ( 5 a ), Cy ( 5 b )) were prepared from compounds 3 a and 3 b by silyl deprotection with TBAF and subsequent acidification of the intermediate salts [Re(H)(NO)(PR3)(C5H4O)][NBu4] (R=iPr ( 4 a ), Cy ( 4 b )) with NH4Br. In nonpolar solvents, compounds 5 a and 5 b formed an equilibrium with the isomerized trans‐dihydride cyclopentadienone species [Re(H)2(NO)(PR3)(C5H4O)] ( 6 a,b ). Deuterium‐labeling studies of compounds 5 a and 5 b with D2 and D2O showed H/D exchange at the HRe and HO positions. Compounds 5 a and 5 b were active catalysts in the transfer hydrogenation reactions of ketones and imines with 2‐propanol as both the solvent and H2 source. The mechanism of the transfer hydrogenation and isomerization reactions was supported by DFT calculations, which suggested a secondary‐coordination‐sphere mechanism for the transfer hydrogenation of ketones.  相似文献   

19.
The new, structurally characterized hydrido carbonyl tetrahydridoborate iron pincer complex [(iPr-PNP)Fe(H)(CO)(η(1)-BH(4))] (1) catalyzes the base-free hydrogenation of ketones to their corresponding alcohols employing only 4.1 atm hydrogen pressure. Turnover numbers up to 1980 at complete conversion of ketone were reached with this system. Treatment of 1 with aniline (as a BH(3) scavenger) resulted in a mixture of trans-[(iPr-PNP)Fe(H)(2)(CO)] (4a) and cis-[(iPr-PNP)Fe(H)(2)(CO)] (4b). The dihydrido complexes 4a and 4b do not react with acetophenone or benzaldehyde, indicating that these complexes are not intermediates in the catalytic reduction of ketones. NMR studies indicate that the tetrahydridoborate ligand in 1 dissociates prior to ketone reduction. DFT calculations show that the mechanism of the iron-catalyzed hydrogenation of ketones involves alcohol-assisted aromatization of the dearomatized complex [(iPr-PNP*)Fe(H)(CO)] (7) to initially give the Fe(0) complex [(iPr-PNP)Fe(CO)] (21) and subsequently [(iPr-PNP)Fe(CO)(EtOH)] (38). Concerted coordination of acetophenone and dual hydrogen-atom transfer from the PNP arm and the coordinated ethanol to, respectively, the carbonyl carbon and oxygen atoms, leads to the dearomatized complex [(iPr-PNP*)Fe(CO)(EtO)(MeCH(OH)Ph)] (32). The catalyst is regenerated by release of 1-phenylethanol, followed by dihydrogen coordination and proton transfer to the coordinated ethoxide ligand.  相似文献   

20.
2,3-Dihydroindoles, 1,2,3,4-tetrahydroquinolines, and 2,3,4,5-tetrahydrobenzo[b]azepines are available by a process that represents formal radical cyclization onto aromatic rings. Optically pure benzo-fused heterocycles are also accessible by this method. p-Iodophenols, especially those with the phenolic oxygen protected as a MOM-ether, can be coupled with amino alcohols to produce N-aryl amino alcohols, which can be converted into the corresponding alkyl iodides in which the nitrogen is protected as a carbamate. These compounds give cross-conjugated ketones after removal of the phenolic protecting group and oxidation with PhI(OAc)(2) in the presence of MeOH. The ketones undergo 5-, 6- or 7-exo-trigonal radical cyclization, and then exposure to acid, or sequential treatment with a Grignard reagent and then acid, effects rearomatization to produce the benzo-fused nitrogen heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号