首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Zhu X  Wang S  Zhou S  Wei Y  Zhang L  Wang F  Feng Z  Guo L  Mu X 《Inorganic chemistry》2012,51(13):7134-7143
Two series of new lanthanide amido complexes supported by bis(indolyl) ligands with amino-coordinate-lithium as a bridge were synthesized and characterized. The interactions of [(Me(3)Si)(2)N](3)Ln(III)(μ-Cl)Li(THF)(3) with 2 equiv of 3-(CyNHCH(2))C(8)H(5)NH in toluene produced the amino-coordinate-lithium bridged bis(indolyl) lanthanide amides [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] (Cy = cyclohexyl, Ind = Indolyl, Ln = Sm (1), Eu (2), Dy (3), Yb (4)) in good yields. Treatment of [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] with THF gave new lanthanide amido complexes [μ-{[η(1):η(1)-3-(CyNHCH(2))Ind](2)Li(THF)}Ln[N(SiMe(3))(2)](2)] (Ln = Eu (5), Dy (6), Yb (7)), which can be transferred to amido complexes 2, 3, and 4 by reflux the corresponding complexes in toluene. Thus, two series of rare-earth-metal amides could be reciprocally transformed easily by merely changing the solvent in the reactions. All new complexes 1-7 are fully characterized including X-ray structural determination. The catalytic activities of these new lanthanide amido complexes for hydrophosphonylation of both aromatic and aliphatic aldehydes and various substituted aldimines were explored. The results indicated that these complexes displayed a high catalytic activity for the C-P bond formation with employment of low catalyst loadings (0.1 mol?% for aldehydes and 1 mol?% for aldimines) under mild conditions. Thus, it provides a convenient way to prepare both α-hydroxy and α-amino phosphonates.  相似文献   

2.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

3.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

4.
A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields.  相似文献   

5.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

6.
The Ln[N(SiMe(3))(2)](3)/K dinitrogen reduction system, which mimicks the reactions of the highly reducing divalent ions Tm(II), Dy(II), and Nd(II), has been explored with the entire lanthanide series and uranium to examine its generality and to correlate the observed reactivity with accessibility of divalent oxidation states. The Ln[N(SiMe(3))(2)](3)/K reduction of dinitrogen provides access from readily available starting materials to the formerly rare class of M(2)(mu-eta(2):eta(2)-N(2)) complexes, [[(Me(3)Si)(2)N](2)(THF)Ln](2)(mu-eta(2):eta(2)-N(2)), 1, that had previously been made only from TmI(2), DyI(2), and NdI(2) in the presence of KN(SiMe(3))(2). This LnZ(3)/alkali metal reduction system provides crystallographically characterizable examples of 1 for Nd, Gd, Tb, Dy, Ho, Er, Y, Tm, and Lu. Sodium can be used as the alkali metal as well as potassium. These compounds have NN distances in the 1.258(3) to 1.318(5) A range consistent with formation of an (N=N)(2)(-) moiety. Isolation of 1 with this selection of metals demonstrates that the Ln[N(SiMe(3))(2)](3)/alkali metal reaction can mimic divalent lanthanide reduction chemistry with metals that have calculated Ln(III)/Ln(II) reduction potentials ranging from -2.3 to -3.9 V vs NHE. In the case of Ln = Sm, which has an analogous Ln(III)/Ln(II) potential of -1.55 V, reduction to the stable divalent tris(amide) complex, K[Sm[N(SiMe(3))(2)](3)], is observed instead of dinitrogen reduction. When the metal is La, Ce, Pr, or U, the first crystallographically characterized examples of the tetrakis[bis(trimethylsilyl)amide] anions, [M[N(SiMe(3))(2)](4)](-), are isolated as THF-solvated potassium or sodium salts. The implications of the LnZ(3)/alkali metal reduction chemistry on the mechanism of dinitrogen reduction and on reductive lanthanide chemistry in general are discussed.  相似文献   

7.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

8.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

9.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

10.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

11.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

12.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

13.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

14.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

15.
Synthesis of a new class of compounds containing a Ln-O-Al moiety has been accomplished by the reaction of LAlOH(Me) (L = HC(CMeNAr)(2), Ar = 2,6-iPr(2)C(6)H(3)) with a series of Cp(3)Ln compounds. The terminal Al-OH group shows selective reactivity, and the complexes Cp(2)Ln(THF)-O-AlL(Me) (Ln = Yb, 1; Er, 2; Dy, 3), Cp(2)Yb-O-AlL(Me) (4), and Cp(3)Ln(mu-OH)AlL(Me) (Ln = Er, 5; Dy, 6; Sm, 7) were obtained. This allows further insight into the proton exchange process, and two different mechanisms, intermolecular and intramolecular elimination of CpH, are proposed under different conditions. Complexes 1-4, 6, and 7 have been characterized by X-ray structural analyses which reveals a Ln-O-Al or Ln(mu-OH)Al core in these complexes. The obtuse Ln-O-Al angles fall in the range 151.9-169.8 degrees . The reaction of 1 or 4 with Me(3)SnF in toluene under refluxing conditions unexpectedly yielded the compounds [Cp(2)Yb(mu-OSnMe(3))](2) (8) and LAl(Me)F (9). Reactions of LAlOH(Me) with the mono- and dicyclopentadienyl complexes LYbCp(Cl) (10) and LYbCp(2) (11) supported by the bulky beta-diketiminate ligand were unsuccessful. However, the reaction of LAl(OH)Me with LYbN(SiMe(3))(2)Cl (12) containing a labile Yb-N bond leads to the formation of LYbCl-O-AlL(Me) (13) under elimination of HN(SiMe(3))(2). Furthermore, complexes 1, 3, 4, and 6 exhibit good catalytic activity for the polymerization of epsilon-caprolactone.  相似文献   

16.
Dehydrogenation of Me(2)NH·BH(3) (1) by group 4 metallocene alkyne complexes of the type Cp(2)M(L)(η(2)-Me(3)SiC(2)SiMe(3)) [Cp = η(5)-cyclopentadienyl; M = Ti, no L (2Ti); M = Zr, L = pyridine (2Zr)] and group 4 metal amido complexes of the type M(NMe(2))(4) [M = Ti (8Ti), Zr (8Zr)] is presented.  相似文献   

17.
A series of trivalent mono- and tris(ligand) lanthanide complexes of a sulfur-bridged binaphthol ligand [1,1'-S(2-HOC(10)H(4)Bu(t)(2)-3,6)(2)] H(2)L(SN), have been prepared and characterised both structurally and photophysically. The H(2)L(SN) ligand provides an increased steric bulk and offers an additional donor atom (sulfur) as compared with 1,1'-binaphthol (BINOL), a ligand commonly used to complex Lewis acidic lanthanide catalysts. Reaction of the diol H(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] affords silylamido- and amino- derivatives [Sm(L(SN))[N(SiMe(3))(2)][HN(SiMe(3))(2)]] and the crystallographically characterised [Sm(L(SN))[N(SiMe(3))(2)](thf)(2)] with different degrees of structural rigidity, depending on the presence of coordinating solvents. The binaphthyl groups of the L(SN) ligand act as sensitisers of the metal centred emission, which is observed for the Eu(III) and Sm(III) complexes studied. We have therefore sought to use emission spectroscopy as a non-invasive technique to monitor a monomer-dimer equilibrium in these complexes. A dramatic difference between the emission properties of the unreactive dimeric Sm(III) aryloxide complex, the solvated monomeric analogues and the amido adduct demonstrated the potential use of such a technique. For a few representative lanthanides (Ln = Sm, Eu and Y) the reaction of the dilithium salt Li(2)L(SN) with either [Ln[N(SiMe(3))(2]3)] or [LnCl(3)(thf)(3)] affords only the homoleptic complex [Li(S)(3)][LnL(SN)(3)](S = thf or diethyl ether); we report the structural characterisation of the Sm complex. However, the reactions of this dipotassium salt K(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] or [SmCl(3)(thf)(3)] give only [SmL(SN)N(SiMe(3))(2)], or intractable mixtures respectively, in which no (tris)binaphtholate is observed. The only isolable lanthanide-L(SN) halide adduct so far is [YbL(SN)I(thf)].  相似文献   

18.
The tethered olefin cyclopentadienyl ligand, [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](-), forms unsolvated metallocenes, [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Ln (Ln = Sm, 1; Eu, 2; Yb, 3), from [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))]K and LnI(2)(THF)(2) in good yield. Each complex in the solid state has both tethered olefins oriented toward the Ln metal center with the Ln-C(terminal alkene carbon) distances 0.2-0.3 A shorter than the Ln-C(internal alkene carbon) distances. The olefinic C-C bond distances in 2 and 3, 1.328(4) and 1.328(5) A, respectively, are normal. Like its permethyl analogue, (C(5)Me(5))(2)Sm(THF)(2), complex 1 reductively couples CO(2) to form the oxalate-bridged dimer [[(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Sm](2)(mu-eta(2):eta(2)-O(2)CCO(2)), 4, in which the tethered olefins are noninteracting substituents. Complex 1 reacts with AgBPh(4) to form an unsolvated cation that has the option of coordinating [BPh(4)](-) or a pendant olefin, a competition common in olefin polymerization catalysis. The structure of [[(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Sm][BPh(4)], 5, shows that both pendant olefins are located near samarium rather than the [BPh(4)](-) counterion.  相似文献   

19.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

20.
A series of lanthanide amide complexes supported by bridged bis(amidinate) ligand L, LLnNHAr(1)(DME) (L = [Me(3)SiNC(Ph)N(CH(2))(3)NC(Ph)NSiMe(3)], Ar(1) = 2,6-(i)Pr(2)C(6)H(3), DME = dimethoxyethane, Ln = Y (1), Pr (2), Nd (3), Gd (4), Yb (5)), [Yb(μ(2)-NHPh)](2)(μ(2)-L)(2) (6) and [LYb](2)(μ(2)-NHAr(2))(2) (7) (Ar(2) = (o-OMe)C(6)H(4)), were synthesized by reaction of LLnCl(THF)(2) with the corresponding lithium amide in good yields and structurally characterized by X-ray crystal structure analyses. All complexes were found to be precatalysts for the catalytic addition of aromatic amines to aromatic nitriles to give monosubstituted N-arylamidines. The catalytic activity was influenced by lanthanide metals and the amido groups with the active sequence of Y (1) < Gd (4) < Nd (3) < Pr (2) ~ Yb (5) for the lanthanide metals and -NHAr(2) < -NHPh < -NHAr(1) for the amido groups. The catalytic addition reaction with complex 5 showed a good scope of aromatic amines. Some key reaction intermediates were isolated and structurally characterized, including the amidinate complexes LLn[NPhCNAr(1)](PhCN) (Ln = Y (8), Ln = Yb (9)), LYb[NAr(2)CNAr(1)](Ar(2)CN) (10), and amide complex 5 prepared by protonation of 9 by Ar(1)NH(2). Reactivity studies of these complexes suggest that the present catalytic formation of monosubstituted N-arylamidines proceeds through nucleophilic addition of an amido species to a nitrile, followed by amine protonolysis of the resultant amidinate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号