首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
We study the critical behavior of Ising quantum magnets with broadly distributed random couplings (J), such that P(ln J) ∼ | ln J|-1 - α, α > 1, for large | ln J| (Lévy flight statistics). For sufficiently broad distributions, α < , the critical behavior is controlled by a line of fixed points, where the critical exponents vary with the Lévy index, α. In one dimension, with = 2, we obtained several exact results through a mapping to surviving Riemann walks. In two dimensions the varying critical exponents have been calculated by a numerical implementation of the Ma-Dasgupta-Hu renormalization group method leading to ≈ 4.5. Thus in the region 2 < α < , where the central limit theorem holds for | ln J| the broadness of the distribution is relevant for the 2d quantum Ising model. Received 6 December 2000 and Received in final form 22 January 2001  相似文献   

2.
Motivated by the observation of a spin-glass transition in almost disorder-free Kagome antiferromagnets, and by the specific form of the effective low-energy model of the S = 1/2, trimerized Kagome antiferromagnet, we investigate the possibility to obtain a spin-glass behavior in two-component, disorder-free models. We concentrate on a toy-model, a modified Ashkin-Teller model in a magnetic field that couples only to one species of spins, for which we prove that a dynamic spin-glass behavior occurs. The dynamics of the magnetization is closely related to that of the underlying Ising model in zero field in which spins and pseudo-spins are intimately coupled. The spin-glass like history dependence of the magnetization is a consequence of the ageing of the underlying Ising model. Received 21 September 2001 and Received in final form 16 January 2002  相似文献   

3.
The use of parameters measuring order-parameter fluctuations (OPF) has been encouraged by the recent results reported in referenece [2,3] which show that two of these parameters, G and G c, take universal values in the . In this paper we present a detailed study of parameters measuring OPF for two mean-field models with and without time-reversal symmetry which exhibit different patterns of replica symmetry breaking below the transition: the Sherrington-Kirkpatrick model with and without a field and the Ising p-spin glass (p = 3). We give numerical results and analyze the consequences which replica equivalence imposes on these models in the infinite volume limit. We give evidence for the transition in each system and discuss the character of finite-size effects. Furthermore, a comparative study between this new family of parameters and the usual Binder cumulant analysis shows what kind of new information can be extracted from the finite T behavior of these quantities. The two main outcomes of this work are: 1) Parameters measuring OPF give better estimates than the Binder cumulant for T c and even for very small systems they give evidence for the transition. 2) For systems with no time-reversal symmetry, parameters defined in terms of connected quantities are the proper ones to look at. Received 20 September 2000 and Received in final form 10 January 2001  相似文献   

4.
5.
We represent the generators of the SU(N) algebra as bilinear combinations of Fermi operators with imaginary chemical potential. The distribution function, consisting of a minimal set of discrete imaginary chemical potentials, is introduced to satisfy the local constraints. This representation leads to the conventional temperature diagram technique with standard Feynman codex, except that the Matsubara frequencies are determined by neither integer nor half-integer numbers. The real-time Schwinger-Keldysh formalism is formulated in the framework of complex equilibrium distribution functions for auxiliary semi-fermionic fields. We discuss the continuous large N and SU(2) large spin limits. We illustrate the application of this technique for magnetic and spin-liquid states of the Heisenberg model. Received 26 February 2001 and Received in final form 25 April 2001  相似文献   

6.
Gallager codes are the best error-correcting codes to date. In this paper we study them by using the tools of statistical mechanics. The corresponding statistical mechanics model is a spin model on a sparse random graph. The model can be solved by elementary methods (i.e. without replicas) in a large connectivity limit. For low enough temperatures it presents a completely frozen glassy phase (q EA = 1). The same scenario is shown to hold for finite connectivities. In this case we adopt the replica approach and exhibit a one-step replica symmetry breaking order parameter. We argue that our ansatz yields the exact solution of the model. This allows us to determine the whole phase diagram and to understand the performances of Gallager codes. Received 9 April 2001  相似文献   

7.
Surface growth models may give rise to instabilities with mound formation whose typical linear size L increases with time (coarsening process). In one dimensional systems coarsening is generally driven by an attractive interaction between domain walls or kinks. This picture applies to growth models for which the largest surface slope remains constant in time (corresponding to model B of dynamics): coarsening is known to be logarithmic in the absence of noise ( L(t) ∼ ln t) and to follow a power law ( L(t) ∼t 1/3) when noise is present. If the surface slope increases indefinitely, the deterministic equation looks like a modified Cahn-Hilliard equation: here we study the late stages of coarsening through a linear stability analysis of the stationary periodic configurations and through a direct numerical integration. Analytical and numerical results agree with regard to the conclusion that steepening of mounds makes deterministic coarsening faster : if α is the exponent describing the steepening of the maximal slope M of mounds ( M αL) we find that L(t) ∼t n: n is equal to for 1≤α≤2 and it decreases from to for α≥2, according to n = α/(5α - 2). On the other side, the numerical solution of the corresponding stochastic equation clearly shows that in the presence of shot noise steepening of mounds makes coarsening slower than in model B: L(t) ∼t 1/4, irrespectively of α. Finally, the presence of a symmetry breaking term is shown not to modify the coarsening law of model α = 1, both in the absence and in the presence of noise. Received 28 September 2001 and Received in final form 21 November 2001  相似文献   

8.
The random field q-states Potts model is investigated using exact groundstates and finite-temperature transfer matrix calculations. It is found that the domain structure and the Zeeman energy of the domains resembles for general q the random field Ising case (q = 2). This is also the expected outcome based on a random-walk picture of the groundstate. The domain size distribution is exponential, and the scaling of the average domain size with the disorder strength is similar for q arbitrary. The zero-temperature properties are compared to the equilibrium spin states at small temperatures, to investigate the effect of local random field fluctuations that imply locally degenerate regions. The response to field perturbations (`chaos') and the susceptibility are investigated. In particular for the chaos exponent it is found to be 1 for q = 2,..., 5. Finally for q = 2 (Ising case) the domain length distribution is studied for correlated random fields. Received 27 August 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: rieger@lusi-sb.de  相似文献   

9.
We present a detailed study of the scaling behavior of correlations functions and AC susceptibility relaxations in the aging regime in three-dimensional spin glasses. The agreement between simulations and experiments is excellent confirming the validity of the full aging scenario with weak sub-aging effects. Received 21 December 2000 and Received in final form 22 February 2001  相似文献   

10.
Disordered systems exhibiting exponential localization are mapped to anisotropic spin chains with localization length being related to the anisotropy of the spin model. This relates localization phenomenon in fermions to the rotational symmetry breaking in the critical spin chains. One of the intriguing consequence is that the statement of Onsager universality in spin chains implies universality of the localized fermions where the fluctuations in localized wave functions are universal. We further show that the fluctuations about localized nonrelativistic fermions describe relativistic fermions. This provides a new approach to understand the absence of localization in disordered Dirac fermions. We investigate how disorder affects well known universality of the spin chains by examining the multifractal exponents. Finally, we examine the effects of correlations on the localization characteristics of relativistic fermions. Received 28 September 2001 / Received in final form 30 November 2001 Published online 2 October 2002 RID="a" ID="a"e-mail: isatija@nickel.nist.gov  相似文献   

11.
Dynamical linked cluster expansions are linked cluster expansions with hopping parameter terms endowed with their own dynamics. We discuss physical applications to systems with annealed and quenched disorder. Examples are the bond-diluted Ising model and the Sherrington-Kirkpatrick spin glass. We derive the rules and identify the full set of graphs that contribute to the series in the quenched case. This way it becomes possible to avoid the vague extrapolation from positive integer n to n = 0, that usually goes along with an application of the replica trick. Received 13 December 2001 Published online 25 June 2002  相似文献   

12.
Using 155Gd M?ssbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T ↦ 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed. Received 17 October 2001 Published online 6 June 2002  相似文献   

13.
We study the statistical properties of the sum S t = dt'σ t', that is the difference of time spent positive or negative by the spin σ t, located at a given site of a D-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of St and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature ( T > T c), criticality ( T = T c), and low temperature ( T < T c). We discuss in particular the question of the temperature dependence of the persistence exponent , as well as that of the spectrum of exponents (x), in the low temperature phase. The probability that the temporal mean S t/t was always larger than the equilibrium magnetization is found to decay as t - - ?. This yields a numerical determination of the persistence exponent in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model. Received 4 December 2000  相似文献   

14.
We study the deviations from perfect memory in negative temperature cycle spin glass experiments. It is known that the a.c. susceptibility after the temperature is raised back to its initial value is superimposed to the reference isothermal curve for large enough temperature jumps ΔT (perfect memory). For smaller ΔT, the deviation from this perfect memory has a striking non monotonous behavior: the `memory anomaly' is negative for small ΔT's, becomes positive for intermediate ΔT's, before vanishing for still larger ΔT's. We show that this interesting behavior can be reproduced by simple Random Energy trap models. We discuss an alternative interpretation in terms of droplets and temperature chaos. Received 23 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: sasaki@ipno.in2p3.fr  相似文献   

15.
Random walk arguments and exact numerical computations are used to study one-dimensional random field chains. The ground state structure is described with absorbing and non-absorbing random walk excursions. At low temperatures, the local magnetization follows the ground state except at regions where a local random field fluctuation makes thermal excitations easier. This is explained by the random walk picture, implying that the magnetization lengthscale is a product of the domain size and the thermal excitation scale. Received 16 October 2000 and Received in final form 7 June 2001  相似文献   

16.
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the “perturbative” limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically “irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed. Received 23 April 2002 / Received in final form 24 July 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: akc@mpipks-dresden.mpg.de  相似文献   

17.
18.
A high dimensionality calculation (Weiss like) has been carried out for antiferromagnetism (AFM) in structures with many sublattices. By allowing quenched disorder in the exchange interactions our results clearly exhibit the interplay between the effects of lattice frustration and disorder on the system's properties. For given number of sublattices present, there are several possible phases (ordering of the spins) and as many metastable states in the ergodic phases. It is found that the glassy behavior, and metastability, for multi-sublattices systems is substantially enhanced as compared with simple structures, exhibiting structure dependent de Almeida-Thouless lines. Strongly disordered systems have the long-range AFM ordering, ergodic metastable states and glassy phases intermingled in a non-trivial way. Also, even small fluctuations in the exchange parameters do induce sizeable glassy behavior in structures with many sublattices. Spin glass behavior in apparently non-disordered systems as certain pyrochlores may be accounted for within the present context. Received 9 April 1999 and Received in final form 8 June 1999  相似文献   

19.
We discuss the occurrence and the stability of charge density plateaux in ladder-like t-J systems (at zero magnetization M = 0) for the cases of 2- and 3-leg ladders. Starting from isolated rungs at zero leg coupling, we study the behaviour of plateaux-related phase transitions by means of first order perturbation theory and compare our results with Lanczos diagonalizations for t-J ladders (N = 2 × 8) with increasing leg couplings. Furthermore we discuss the regimes of rung and leg couplings that should be favoured for the appearance of the charge density plateaux.Received: 28 July 2003, Published online: 8 December 2003PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.27. + a Strongly correlated electron systems; heavy fermions - 75.10.-b General theory and models of magnetic ordering - 75.10.Jm Quantized spin models  相似文献   

20.
We introduce a discrete model describing the motion of a zigzag domain wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field. The main ingredients are dipolar interactions and anisotropy. We investigate the dynamic hysteresis by analyzing the effects of external field frequency on the coercive field by Monte Carlo simulations. Our results are in good agreement with experiments on Fe/GaAs films reported in literature, and we conclude that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号