首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this work, a novel calibration approach for minor and trace element quantification in LA-ICP-MS imaging of biological tissues is presented. Droplets of aqueous standard solutions are deposited onto pre-cut pieces of filter paper, allowed to dry, and sputtered with a thin gold layer for use as pseudo-internal standard. Analysis of the standards using LA-ICP-MS is performed using radial line-scans across the filters. In contrast to conventionally used preparation of matrix-matched tissue standards, the dried-droplet approach offers a variety of advantages: The standards are easy to prepare, no characterization of the standards using acid digestion is required, no handling of biological materials is necessary, and the concentration range, as well the number of investigated analytes is almost unlimited. The proposed quantification method has been verified using homogenized tissue standards with known analyte concentrations before being applied to a human malignant mesothelioma biopsy from a patient who had not received any chemotherapeutic treatment. Elemental distribution images were acquired at a lateral resolution of 40 μm per pixel, limits of detection ranging from 0.1 μg g−1 (Mn, Ni, Cu, Zn) to 13.2 μg g−1 (K) were reached.  相似文献   

2.
Hui-Fang Hsieh 《Talanta》2009,79(2):183-240
This work describes a simple procedure for blood lead level determination. The proposed method requires little sample pretreatment and subsequent direct analysis of a dried blood spot on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. With the matrix-matched calibration method, the recovery ranged from 97.8% to 112.8%, while the aqueous standard calibration method ranged 90.4% to 122.4%. The lower detection limit was estimated as 0.1 ng mL−1. The determination precision, expressed as the relative standard deviation (RSD), was not worse than 10% for all results. A sample throughput of approximately 5 min per sample made it possible to rapidly screen a large number of samples.  相似文献   

3.
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).  相似文献   

4.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

5.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of selected elements (P, S, Fe, Cu, Zn and C) in thin sections of rat brain samples (thickness 20 μm). The sample surface was scanned (raster area ~ 2 cm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 μm, and irradiance 1 × 109 W cm− 2). The laser ablation system was coupled to a double-focusing sector field. The possibility was evaluated of using carbon (via measurement of 13C+) as an internal standard element for imaging element distribution as part of this method. The LA-ICP-MS images obtained for P, S, Fe Cu and Zn were quantified using synthetically prepared matrix-matched laboratory standards. Depending on the sample analyzed, concentrations of Cu and Zn in the control tissue were found to be in the range of 8–10 μg g− 1 and 10–12 μg g− 1, while in the tumor tissue these concentrations were in the range of 12–15 μg g− 1 and 15–17 μg g− 1, respectively. The measurements of P, S and Fe distribution revealed the depletion of these elements in tumor tissue. In all the samples, the shape of the tumor could be clearly distinguished from the surrounding healthy tissue by the depletion in carbon. Additional experiments were performed in order to study the influence of the water content of the analyzed tissue on the intensity signal of the analyte. The results of these measurements show the linear correlation (R2 = 0.9604) between the intensity of analyte and amount of water in the sample. The growth of a brain tumor was thus studied for the first time by imaging mass spectrometry.  相似文献   

6.
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g− 1 and 0.04 µg g− 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

7.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of 39K+, 24Mg+, 55Mn+, 63Cu+, 31P+, 34S+ and 11B+ were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon (13C+) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L−1. The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 μg g−1 for Cu and 14,000 μg g−1 for K.  相似文献   

8.
A gas diffusion-flow injection system was developed for the determination of carbon dioxide in gaseous samples. The calibration was based on the use of either gaseous carbon dioxide or aqueous sodium carbonate standards. Gaseous carbon dioxide samples and gaseous or aqueous standards were injected directly into a donor stream of 1.0×10−4 M H2SO4. In the gas diffusion unit, carbon dioxide diffused through a PTFE membrane into an acceptor stream containing a mixed acid/base indicator. The absorbance of the acceptor stream was monitored spectrophotometrically at 554 nm. The calibration plot was linear over the range of 5.00×102 to 1.27×104 μl l−1 with a sample throughput of 28 h−1 and 3.2% R.S.D. ([CO2]=2.37×103 μl l−1, n=12). The detection limit was determined as 2.50×102 μl l−1. The flow system was successfully applied to the analysis of several natural gaseous samples and the headspace of milk containers during storage. The flow injection results were found to be statistically indistinguishable at the 95% confidence level from those obtained by gas chromatography using thermal conductivity detection.  相似文献   

9.
A sulfur reference solution at the 1 mg kg−1 level, NMIJ CRM 4215-a, has been issued by the National Metrology Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The intended use of this CRM is for the calibration of standards used in the determination of sulfur in liquid fuels. The certified value of this CRM was determined using the gravimetric blending method. Thiophene and toluene were chosen as the high purity sulfur compound and the dilution solvent, respectively. Measurements of the trace sulfur in the solvent were performed using the total sulfur analyzer with an enrichment system; the standard addition method was employed. When trace sulfur in the solvent was evaluated, the signal which appears with no sample injection was subtracted as the background.  相似文献   

10.
The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L−1 to 200 μmol L−1 with the detection limit of 0.8 μmol L−1, which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors.  相似文献   

11.
This study presents two simple and rapid methods for the quantification of therapeutic mAbs based on LC. Two mAbs (bevacizumab and infliximab) in plasma samples were purified using magnetic beads immobilized with a commercially-available idiotype antibody for each mAb. Purified mAbs were separated with HT-RPLC and detected with their native fluorescence. Using immunoaffinity beads, each mAb was selectively purified and detected as a single peak in the chromatogram. The HT-RPLC achieved good separation for the mAbs with sharp peaks within 20 min. The calibration curves of the two mAbs ranged from 1 to 20 μg mL−1 (bevacizumab) and 1–10 μg mL−1 (infliximab), and they had strong correlation coefficients (r2 > 0.998). The LOD of bevacizumab and infliximab was 0.07 and 0.15 μg mL−1, and the LLOQ of bevacizumab and infliximab was 0.12 and 0.25 μg mL−1, respectively. Thus, the sensitivities were sufficient for clinical analysis. Immunoaffinity purification with HT-RPLC produced a selective and accurate bioanalysis without an LC-MS/MS instrument. Both methods could become general-purpose analytical methods and complement the results obtained with conventional LBA.  相似文献   

12.
Lukas Vaclavik 《Talanta》2010,82(5):1950-1957
Direct analysis in real time (DART) ionization coupled to an (ultra)high resolution mass spectrometer based on orbitrap technology (orbitrapMS) was used for rapid quantitative analysis of multiple mycotoxins isolated from wheat and maize by modified QuEChERS procedure. After initial evaluation of ionization efficiencies for major groups of mycotoxins achievable with DART technology, sample preparation procedure and instrument parameter settings were optimized to obtain sensitive and accurate determination of most intensively ionizing toxins (deoxynivalenol, nivalenol, zearalenon, actyldeoxynivalenol, deepoxy-deoxynivalenol, fusarenon-X, altenuene, alternariol, alternariolmethylether, diacetoxyscirpenol, sterigmatocystin). The lowest calibration levels (LCLs) estimated for the respective analytes ranged from 50 to 150 μg kg−1. Quantitative analysis was performed either with the use of matrix-matched standards or by employing commercially available 13C-labeled internal standards (available for deoxynivalenol, nivalenol and zearalenon). Good recoveries (100-108%) and repeatabilities (RSD 5.4-6.9%) were obtained at spiking level 500 μg kg−1 with isotope dilution technique. Based on matrix-matched calibration, recoveries and repeatabilities were in the range 84-118% and 7.9-12.0% (RSD), respectively. The trueness of data obtained for deoxynivalenol and zearalenon in wheat/maize by DART-orbitrapMS was demonstrated by analysis of certified reference materials (CRMs). Good agreement of these results with data generated by validated ultra-high pressure liquid chromatography-time-of-flight mass spectrometry method was documented.  相似文献   

13.
A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 μL of 0.5 mol L−1 nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L−1 and the relative standard deviation (R.S.D.) for 10 replicates at 1 μg L−1 Cd2+ concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 μg L−1. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.  相似文献   

14.
This paper proposes a method for the determination of lead in aluminum and magnesium antacids employing electrothermal atomic absorption spectrometry (ET AAS). The pyrolysis and atomization temperatures established during the optimization step were 700 and 2200 °C, respectively, using phosphate as the chemical modifier. Under these conditions, a characteristic mass of 25 pg, and limits of detection and quantification of 0.40 and 1.35 μg L−1, respectively were obtained. Some experiments demonstrated that the calibration can be performed employing the external calibration technique using aqueous standards. The precision expressed as relative standard deviation (RSD %) was 4.03% for an antacid sample with lead concentrations of 284.5 μg L−1. The proposed method was applied for the determination of lead in five antacid samples acquired in Salvador City, Brazil. The lead content was varied from 87 to 943 μg g−1. The samples were also analyzed after complete dissolution by inductively coupled plasma mass spectrometry (ICP-MS). No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

15.
This paper reports the assessment of the total mercury (T-Hg) and methylmercury (MeHg) contamination of mussel samples collected by two sampling campaigns from along the coastline of Sardinia (Italy). T-Hg has been determined by a direct mercury analyser (DMA) whereas MeHg has been determined by gas chromatography-mass spectrometry (GC-MS) after acid extraction, and employs a novel NaBPh4 derivatization method. The evaluation of the quality of measurements was carried out by analysing candidate certified reference material (CRM) BCR 710, for MeHg and T-Hg, and CRM IAEA-350 for T-Hg. In the analysed samples, the T-Hg concentrations range from 35 to 115 μg kg−1 and from 40 to 830 μg kg−1, for the two sampling campaigns, respectively, whereas the MeHg concentrations range from l5 to 51 μg kg−1 and from 17 to 116 μg kg−1. Consequently, the MeHg/T-Hg ratios range from 0.33 to 0.91 and from 0.14 to 0.98, respectively. Despite the increasing trend of Hg concentration from the first to the second sampling campaign, the T-Hg concentration of all the samples was much below the 0.5 μg g−1 WHO limit, and the MeHg values ranged between 2.2 and 17.2 μg kg−1, not exceeding the 43.5 μg kg−1 tolerable daily residue level calculated for Italy.  相似文献   

16.
An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels.The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low μg g−1 range.  相似文献   

17.
Visualization of elemental distributions in thin sections of biological tissue is gaining importance in many disciplines of biological and medical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and scanning micro-X-ray fluorescence spectrometry (micro-XRF) are two widely used microanalytical techniques for elemental mapping. This article compares the capabilities of the two techniques for imaging the distribution of selected elements in the model organism Daphnia magna in terms of detection power and spatial resolution. Sections with a thickness of 10 and 20 μm of the fresh water crustacean Daphnia magna were subjected to LA-ICP-MS and micro-XRF analysis. The elemental distributions obtained for Ca, P, S and Zn allow element-to-tissue correlation. LA-ICP-MS and micro-XRF offer similar limits of detection for the elements Ca and P and thus, allow a cross-validation of the imaging results. LA-ICP-MS was particularly sensitive for determining Zn (LOD 20 μg g−1, 15 μm spot size) in Daphnia magna, while the detection power of micro-XRF was insufficient in this context. However, LA-ICP-MS was inadequate for the measurement of the S distributions, which could be better visualized with micro-XRF (LOD 160 μg g−1, 5 s live time). Both techniques are thus complementary in providing an exhaustive chemical profiling of tissue samples.  相似文献   

18.
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1–30.0 μg L−1 and 0.2–30.0 μg L−1 with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L−1 for albendazole and 0.06 μg L−1 for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L−1) were in the range of 6.3–10.1% and 5.0–7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples.  相似文献   

19.
A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL−1 to 270.69 mg dL−1), low detection limit (0.25 mg dL−1), and high sensitivity (49.61 μA mM−1 cm−2). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time.  相似文献   

20.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C+, 33S+ and 34S+ within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C+ as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号