首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
This paper presents a stability analysis of an oscillating body subjected to fluid forces located in a transient incompressible viscous flow. If the body is supported by elastic springs, oscillation will begin. If the characteristic period of the body and the excited oscillating period due to fluid forces match each other, resonance can occur. Stability analysis is therefore needed to determine the nonlinear behavior of the body. This paper presents an analysis of the changing stability of bodies by the numerical computation. To implement the computation, the motion of fluid around a body is expressed by the Navier–Stokes equation described in the arbitrary Lagrangian–Eulerian form. The fluid influence on the body is discretized by the finite element method based on a mixed interpolation by the bubble function in space. The motion of the body is assumed to be expressed by the equations of motion. To evaluate stability, stability function is defined by the total energy of the oscillating body. The stability is judged according to a stability index, obtained by the use of the automatic differentiation (AD) of the stability function. AD is a derivative computation method that gives high accuracy. By the use of AD, the second‐order derivative matrix, which is needed to compute the stability index, can be obtained exactly. For the numerical studies, analyses of one degree of freedom and two degrees of freedom (2DOF) for a circular cylinder and 2DOF for a rectangular cylinder are carried out. A combination of a cylinder and supporting elastic spring can produce stable, neutral and unstable states. It is shown that the stability of the cylinder can be determined by the stability index. This paper shows new possibilities for stability analysis of bodies located in a fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A free-surface-tracking algorithm based on the SOLA-VOF method is analysed for numerical stability when modelling gas bubble evolution in a fluid. It is shown that an instability can arise from the fact that the bubble pressure varies with its volume. A time step stability criterion is introduced which is a function of the natural oscillation period but does not depend on the mesh size. This dependence suggests that the instability is likely to arise in the case of a general motion of a bubble, especially if break-up occurs. The effect is shown using linear Fourier analysis of the discretized equation for radial bubble oscillation and demonstrated numerically using a CFD code FLOW-3D. One- and three-dimensional situations are considered: a bubble in a fluid bounded by two concentric surfaces and a bubble floating in a fluid chamber with and without gravity. In cases where no analytical solution is available, a numerical method for the stability time step limit calculation is suggested based on finding the natural oscillation frequency. The nature of the instability suggests that it can be a feature of any numerical algorithm which models transient fluid flow with a free surface.  相似文献   

3.
超疏水小球低速入水空泡研究   总被引:3,自引:4,他引:3  
黄超  翁翕  刘谋斌 《力学学报》2019,51(1):36-45
物体入水问题是一类复杂的流固耦合问题,具有广泛的工程应用背景.物体在跨越自由液面入水的过程中,在一定的条件下,会向水中卷入空气形成空泡,空泡的运动还可能形成指向物体的射流,从而对物体的受力及其运动过程产生影响.超疏水表面能够在物体入水过程中形成多尺度流固耦合作用,进而影响物体的运动和宏观流动现象.而对于小尺度的小球低速入水问题,表面和界面力往往起主导作用.为了在更广的参数空间获得超疏水小球入水空泡类型和小球的运动特性,采用高速摄影实验方法,研究了半径0.175$\sim$10mm的超疏水小球低速入水及空泡动力学行为,获得了小球漂浮振荡、准静态空泡、浅闭合空泡、深闭合空泡和表面闭合空泡5种类型的动力学行为,探讨了这些运动行为与韦伯数We}和邦德数Bo之间的关系,并推导了小球漂浮振荡与下沉现象的无量纲关系.研究结果表明:超疏水小球的入水及空泡动力学行为主要与韦伯数We和邦德数Bo有关.在邦德数Bo $<$ $O$ (10$^{-1})$范围内,表面张力对流动的影响显著,随着韦伯数We}的增大,小球入水及空泡动力学行为依次经历漂浮振荡、准静态闭合、浅闭合、深闭合和表面闭合;在邦德数$O$ (10$^{-1})$<$ Bo} $<$O(1)$范围内,漂浮振荡现象不再发生;当邦德数$Bo>O(1)$后,浅闭合现象也不再发生;小球漂浮振荡与下沉现象的临界关系可以用相似律关系描述.   相似文献   

4.
This paper studies the three-dimensional unsteady problem of the hydroelastic behavior of a floating infinite plate under the impact of waves generated by horizontal rectilinear motion of a slender solid in a fluid of infinite depth. An analytic solution of the problem is found based on the known solutions for the unsteady motion of a point source of mass in a fluid of infinite depth under a floating plate. Asymptotic formulas are obtained which model the motion of a solid slender body in a fluid by replacing the body with a source-sink system. These formulas are used to numerically analyze the effect of plate thickness, depth of the body, its dimensions and the velocity of rectilinear motion on the amplitude of deflection of the floating plate. The motion of a submarine under a nonbreakable plate was modeled experimentally. Theoretical and experimental data are in good agreement.  相似文献   

5.
朱如曾 《力学学报》1990,22(4):385-391
本文应用连续系统稳定性理论,处理粘性不可压缩流体所支持的平衡浮体的非线性稳定问题,其中考虑到浮体的方位角和质心位置以及流体速度的非线性扰动,给出了各种尺度的非线性稳定、渐近稳定判据及不稳定判据。  相似文献   

6.
Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.  相似文献   

7.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions.  相似文献   

8.
A network model of a multi-modular floating platform incorporated with a runway structure, viewed as a non-autonomous network with discrete–continuum oscillators, is developed for a general purpose of dynamic analysis. Numerical analysis shows the coupling effect between the two different types of oscillators on various complex dynamics, including sudden leaps, torus motions, beating vibrations, the synergetic effect of phase lock and anti-phase synchronizations. The amplitude death phenomenon, a suppressed weak oscillation state, is studied by using the fundamental solution derived by the averaging method. The parametric domain of the onset of amplitude death is illustrated to show the great significance to the stability design of the floating platform. The effect of the flexural rigidity of the runway on the distribution of amplitude death state is also discussed.  相似文献   

9.
Like with other types of fluid bearings, rotors supported by floating ring bearings may become unstable with increasing speed of rotation due to self-excited vibrations. In order to study the effects of the nonlinear bearing forces, within this contribution a perfectly balanced symmetric rotor is considered which is supported by two identical floating ring bearings. Here, the bearing forces are modeled by applying the short bearing theory for both fluid films. A linear stability analysis about the static equilibrium position of the rotor shows that for a critical revolution speed the real part of an eigenvalue pair changes its sign. By means of a center manifold reduction it is shown that this destabilization of the steady state is due to a Hopf-bifurcation. Furthermore, the type of this bifurcation is determined as well as the existence and stability of limit-cycles. Notably it is found that depending on the parameters of the floating ring bearing subcritical as well as supercritical bifurcations may occur. Additionally, the analytical results obtained from the center manifold reduction are compared to numerical results by a continuation method. In conclusion, the influences of bearing design parameters on the stability and on the limit-cycles are discussed.  相似文献   

10.
A six degrees of freedom (6DOF) algorithm is implemented in the open‐source CFD code REEF3D. The model solves the incompressible Navier–Stokes equations. Complex free surface dynamics are modeled with the level set method based on a two‐phase flow approach. The convection terms of the velocities and the level set method are treated with a high‐order weighted essentially non‐oscillatory discretization scheme. Together with the level set method for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid‐fluid interface is represented with a combination of the level set method and ghost cell immersed boundary method. As a result, re‐meshing or overset grids are not necessary. The capability, accuracy, and numerical stability of the new algorithm is shown through benchmark applications for the fluid‐body interaction problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号