首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fixed eigenstate|En(0)is discussed in this paper.Under the gap-condition that|Ek(s)-En(s)|λ0 for all s∈[0,1]and all k n,computable upper bounds for the adiabatic approximation errors between the exact solution|ψT(t)and the adiabatic approximation solution|ψadi T(t)to the Schr¨odinger equation i|˙ψT(t)=HT(t)|ψT(t)with the initial condition|ψT(0)=|En(0)are given in terms of fidelity and distance,respectively.As an application,it is proved that when the total evolving time T goes to infinity,|ψT(t)-|ψadi T(t)converges uniformly to zero,which implies that|ψT(t)≈|ψadi T(t)for all t∈[0,T]provided that T is large enough.  相似文献   

2.
It is shown that in 3 + 1 Minkowski space classical field theories with energy-momentum θμν(x,t) satisfying θ00(x,t) ? 0 and θμμ(x,t) = 0 have no finite energy periodic (or static) solutions. In particular this rules out classical glueball solutions. to Yang-Mills theories with compact gauge groups.  相似文献   

3.
If one defines the parameters of the Weinberg-Salam theory at a momentum scale M = O(MW, MZ), the weak effective hamiltonian at a momentum scale μ ? M has logarithmically enhanced corrections, of order αln(M2/μ2). We present a computation of these corrections, for that part of the hamiltonian which leads to detectable weak-electromagnetic interference effects. The largest correction can be absorbed into a running sin2θ(μ). Other, smaller, corrections are estimated, taking into account the effect of strong interactions.An estimate of the non-logarithmically enhanced corrections is also given, by evaluating them in the limit sin2θ → 0. From the SLAC e - d asymmetry it was found sin2θ = 0.224 ± 0.020 at μ2 ? 2 GeV2. In correspondence, we find sin2θ(M) = 0.217 ± 0.020. This value, however, is subject to uncertainties deriving from the effect of the strange and of the antiquark parton sea.  相似文献   

4.
5.
David Ronis 《Physica A》1981,107(1):25-47
Kawasaki's mode coupling theory [Ann. Phys. 61 (1970) 1] is used to compute time correlation functions of the form 〈Ak0(t0) … Akn(tn)〉, where Ak(t) represents some slowly varying quantity. The Gaussian and Bare Vertex approximations are made, thus yielding extremely simple expressions for these higher order correlation functions. These do not contain any bare transport coefficients and suggest relatively simple tests by which the theory could be checked. Examples relating to light scattering in nonequilibrium systems and the hydrodynamics of simple fluids are presented.  相似文献   

6.
Mean-field theory applied to superconductors with one-dimensional band in the presence of both the homogeneous magnetic field H0 and the antiferromagnetic field HQ, the second-order phase transition temperature is investigated for the arbitrary angle θ between H0 and HQ. It is found that the remarkable superconducting region in the case of θ = 0 is retained only for small θ and that the spatially dependent order parameter coexists with the spatially uniform order parameter except for θ = τ/2.  相似文献   

7.
Electromagnetic waves carry the Abraham momentum, whose density is given by pEM = S(r,t) / c2. Here S(r,t) = E(r,t) × H(r,t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n2 + iκ2, submerged in a transparent dielectric of refractive index n1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n1, n2, κ2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.  相似文献   

8.
Nickel film, with total thickness tNi in the range 1000-2000 Å, is known to exhibit perpendicular magnetic anisotropy (PMA), if the film has been deposited at room temperature. This phenomenon is due to the magneto-elastic (ME) effect. The same is also true for the (Ni/Pd)n multilayers, where n is the period (n≥3). In this paper, we have made two kinds of multilayers: one, which does not have a Pd cap layer, belongs to the A-group, and the other, which has, belongs to the B-group. The polar Kerr rotation θk, the polar Kerr ellipticity εk, and the figure of merit (θk)2R, where R is the reflectance, were measured for the two wavelengths, i.e. λ=633 and 442 nm, respectively. The effective PMA energy K was measured from the vibrating sample magnetometer. It was found that the most favorable multilayer for the magneto-optical (MO) application exists among the A-group samples: i.e. the tNi=1300 Å, tPd=50 Å (seed layer), and n=1 sample. We obtained θk=−9.76 min, εk=−9.13 min, (θk)2R=1.51 (rad)2 at λ=442 nm, and K=3.21×106 erg/cc for this optimal multilayer. Finally, the effects of the Pd seed layer on PMA and MO are also studied.  相似文献   

9.
10.
We investigate an autocorrelation function of a soluble three-dimensional system, namely the temporal coherence functionC E(t)∝<E(0)E(t)> of the thermal radiation field in a cube-shaped cavity for the stochastic electrical fieldE. In the thermodynamic limit,C E(t) relaxes exponentially at intermediate times, but a “long-tail” behaviourC 0(t)=At?4 withA<0 is predominant for long times. In the case of a finite, but not too small, cavity lengthL obeyingΛ=hc/k BT?L and at timest withct?L, C E(t) is described by an asymptotic expansion in powers ofL ?1 using generalized Riemann zeta functions. Surface-and shape-effects enhance the long-tail. In the case of very small cavities withL«Λ, we calculate an expansion ofC E(t) in terms of exp(?L ?1) and cosines. An oscillatory, but not strictly periodic, long-time behaviour is observed in this case.  相似文献   

11.
The motion of an hydrogenoïd atom in a laser field is usually given by the time-dependent hamiltonian H(t)=[p?A(t)]2/2+V(r) where V(r) is the atomic potential whileA(t) is to be connected with the laser field. The existence and unicity for the Cauchy problem of the solutions of the corresponding Schrödinger equation are established under mild conditions onA(t) and V(r). The existence of Möller operators is investigated in two cases, namely, when the laser field is a function of time only and when it vanishes asymptotically in time. Special attention is paid for the Coulomb case for which a “distorted” Möller operator is derived. Finally, when the laser field vanishes ast→∞, the photoionisation probability is properly defined by means of the Möller operator $$\Omega (H_{At} ,H) = s - \mathop {\lim }\limits_{t \to \infty } U_{At} (t)^{ - 1} U(t)$$ , whereU(t) is the evolution operator for the system whileU Att (t) is the evolution operator for the atom.  相似文献   

12.
Angular-spectrum representations of wave fields separate naturally into two parts, Vh(R,t) containing only homogeneous plane waves and Vi(R,t) containing only inhomogeneous plane waves. Some properties of Vi(R,t) are presented here. We conclude that, for some problems, Vi(R,t) has several unphysical properties, and that under certain specified conditions, Vi(R,t) can not be neglected compared to Vh(R,t), even far from the sources of the field.  相似文献   

13.
The moments Mn(r) ≡ 1/2 ∝0 dθ sinn θ I(r,θ) of the intensity I(r, θ) in free space surrounding a spherical object emitting radiation with an arbitrary directional dependence are shown to be exactly proportional to r-(n+1), n = 0, 1,….  相似文献   

14.
The long-wavelength excitations in a simple model of a dilute Bose gas at zero temperature are investigated from a purely microscopic viewpoint. The role of the interaction and the effects of the condensate are emphasized in a dielectric formulation, in which the response functions are expressed in terms of regular functions that do not involve an isolated single-interaction line nor an isolated single-particle line. Local number conservation is incorporated into the formulation by the generalized Ward identities, which are used to express the regular functions involving the density in terms of regular functions involving the longitudinal current. A perturbation expansion is then developed for the regular functions, producing to a given order in the perturbation expansion an elementary excitation spectrum without a gap and simultaneously response functions that obey local number conservation and related sum rules.Explicit results to the first order beyond the Bogoliubov approximation in a simple one-parameter model are obtained for the elementary excitation spectrum ωk, the dynamic structure function S(k, ω), the associated structure function Sm(k), and the one-particle spectral function A(k, ω), as functions of the wavevector k and frequency ω. These results display the sharing of the gapless spectrum ωk by the various response functions and are used to confirm that the sum rules of interest are satisfied. It is shown that ωk and some of the Sm(k) are not analytic functions of k in the long wavelength limit. The dynamic structure function S(k, ω) can be conveniently separated into three parts: a one-phonon term which exhausts the f sum rule, a backflow term, and a background term. The backflow contribution to the static structure function S0(k) leads to the breakdown of the one-phonon Feynman relation at order k3. Both S(k, ω) and A(k, ω) display broad backgrounds because of two-phonon excitations. Simple arguments are given to indicate that some of the qualitative features found for various physical quantities in the first-order model calculation might also be found in superfluid helium.  相似文献   

15.
The combined effect of a surface (edge) barrier and volume pinning on the dependence of critical current I c on the magnetic field (IH 0) in bulk type II superconductors is investigated. In low magnetic fields, there is a portion of the curve I c(H 0) where I c grows with H 0, causing a nontrivial peak effect in this field range. Such behavior is explained by the combined effect of a surface (edge) barrier and volume pinning, the latter being rather sensitive to the transport current density distribution in a superconductor.  相似文献   

16.
W. Hess  R. Klein 《Physica A》1976,85(3):509-527
Starting from a N-particle diffusion equation for a system of N interacting spherical Brownian particles, a non-linear transport equation for concentration fluctuations δc(r, t) of the particles is derived. This dynamic equation is transformed into a hierarchy of equations for retarded propagators of increasing numbers of concentration fluctuations. A cluster expansion to lowest order in the average concentration results in a set of two coupled equations. The spectrum of light scattered by the interacting particles is in general not a Lorentzian, due to the non-linear term in the transport equation. For small scattering wave vectors k the width is D(ω)k2, where ω is the transferred frequency. It is shown that D(0) = De, the effective diffusion coefficient. For a hardcore interaction potential the spectrum is Lorentzian and it is found that De = D0(1 + φ), where D0 is the diffusion constant for independent particles and φ the volume concentration of Brownian particles.  相似文献   

17.
《Physics letters. A》1997,235(2):195-199
The transition operator T for the scattering of a particle from N potentials Vj(x) can be expanded into a series featuring the transition operators tj associated with the individual potentials. For Vj(x) both absolutely and square integrable in x, we show, using an analytic continuation argument, that if T is on-shell, i.e. in 〈k|T(k02±i0)|k′〉, |k| = |k′| = k0, then each tj is also on-shell.  相似文献   

18.
An analytical dependence of the cross section for the small-angle scattering of polarized neutrons at spin waves in helimagnets formed because of Dzyaloshinskii—Moriya interaction in cubic crystals without an inversion center (the space group is P213) is obtained. It is assumed that the dispersion of spin waves in helimagnets with the wave vector k s polarized by a magnetic field is larger than the critical field HC2 of the transition to the ferromagnetic phase and has the form E q = A(q ? k s ) + gμB(H ? HС2). It is shown that the cross section for neutron scattering at the two-dimensional map of angles (θ x , θ y ) is two circles of the radii θC with the centers ±θ S , corresponding to the Bragg angle of diffraction by a helix oriented along the applied magnetic field H. The radii of these two circles θC are directly related to the stiffness of spin waves A of the magnetic system and depends on the applied magnetic field: \(\theta _C^2 = \theta _0^2 - \frac{{g{\mu _B}H}}{{{E_n}}}{\theta _0}\), where \({\theta _0} = \frac{{{h^2}}}{{2A{m_n}}}\) and E n and m n are the neutron energy and mass. It is shown that the scattering cross section depends on the neutron polarization, which is evidence of the chiral character of spin waves in the Dzyaloshinskii—Moriya helimagnets even in the completely polarized phase. The cases of neutron scattering at magnons where θ0 ≤ θ S and θ S ≥ θ0 are considered. The case of neutron scattering at spin waves in helimagnets is compared with analogous scattering at ferromagnets where θ S → 0.  相似文献   

19.
We investigate the solutions of the Burgers equation , where F(x,t) is an external force and Φ(x,t) represents a forcing term. This equation is first analyzed in the absence of the forcing term by taking F(x,t)=k1(t)−k2(t)x into account. For this case, the solution obtained extends the usual one present in the Ornstein-Uhlenbeck process and depending on the choice of k1(t) and k2(t) it can present a stationary state or an anomalous spreading. Afterwards, the forcing terms Φ(x,t)=Φ1(t)+Φ2(t)x and Φ(x,t)=Φ3xΦ4/x3 are incorporated in the previous analysis and exact solutions are obtained for both cases.  相似文献   

20.
《Physics letters. A》1998,240(3):137-143
Differential-difference equations (DDEs) un(k)(t) = Fn(t, un+a,…, un+b) for k ≥ 2 are studied for their differential Lie symmetries. We observe that while nonintrinsic Lie symmetries do exist in such DDEs, a great many admit only the intrinsic ones. We also propose a mechanism for automating symmetry calculations for fairly general DDEs, with a variety of features exemplified. In particular, the Fermi-Pasta-Ulam system is studied in detail and its new similarity solutions given explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号