首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The heat transfer performance of a miniature heat pipe system (MHPS) used for cooling a desktop computer processor is presented in this paper. The MHPS consists of 6 parallel cylindrical miniature heat pipes (MHPs) which are connected to a copper block at the evaporator section and which are provided with 15 parallel perpendicular copper sheets at the condenser section, used as external cooling fins. Acetone and ethanol are used as working fluids. As heat source a processor is employed which is attached to the copper block. Heat transfer characteristics of the individual MHPs and the complete MHPS using the two working fluids are experimentally determined. The results show that the maximum and steady state temperature of the processor has been significantly reduced by using MHPs with acetone, more than with ethanol, instead of a conventional finned aluminum heat sink with cooling fan. Additional use of a fan results in a much lower processor temperature for both working fluids.  相似文献   

2.
Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. We also evaluated the effects of particle concentration and operating temperature on the forced convective heat transfer coefficient of the nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the base fluid, ranging from 2% to 50%. Moreover, the results indicate that with increasing nanoparticles concentration and nanofluid temperature, the convective heat transfer coefficient of nanofluid increases. Our experiments revealed that in lower temperatures, the theoretical and experimental findings coincide; however, in higher temperatures and with increased concentrations of the nanoparticles in ethylene glycol, the two set of results tend to have growing discrepancies.  相似文献   

3.
This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2?ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes.  相似文献   

4.
An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11?mm triangular length, 2?mm thickness, and a total length of 1,500?mm. The length of the evaporator section is 600?mm, adiabatic section is 300?mm, and condenser section is 600?mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23?W/m2 for the three selected filling ratios of 10, 30 and 50?% of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30?%. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.  相似文献   

5.
The role of particle diameter in the heat transfer of a gas–solid suspension to the walls of a circulating fluidized bed was studied for particles of uniform size. This work reports and analyzes new experimental results for the local bed to wall heat transfer coefficient, not including the radiation component, in a long active heat transfer surface length laboratory bed, which extend previous findings and clear up some divergences. The research included determining the effects of extension and location of the heat transfer surface, circulating solids mass flux and average suspension density. An experimental set-up was built, with a 72.5 mm internal diameter riser, 6.0 m high, composed of six double pipe heat exchangers, 0.93 m high, located one above the other. Five narrow sized diameter quartz sand particles − 179, 230, 385, 460 and 545 μm − were tested. Temperature was kept approximately constant at 423 K and the superficial gas velocity at 10.5 m/s. The major influence of suspension density on the wall heat transfer was confirmed, and contrary to other authors, a significant effect of particle size was found, which becomes more relevant for smaller particles and increasing suspension density. It was observed that the extension of the heat transfer surface area did not influence the heat transfer coefficient for lengths greater than 0.93 m.The heat transfer surface location did not show any effect, except for the exchanger at the botton of the riser. A simple correlation was proposed to calculate the heat transfer coefficient as a function of particle diameter and suspension density.  相似文献   

6.
The heat transfer characteristics of the heat transfer devices can be done by changing the fluid transport properties and flow features of working fluids. In the present study, therefore, the heat transfer characteristics of two-phase closed thermosyphon (TPCT) with iron oxide-nanofluids are presented. The TPCT is fabricated from the copper tube with the outer diameter and length of 15, 2000 mm, respectively. The TPCT with the de-ionic water and nanofluids (water and nanoparticles) are tested. The iron oxide nanoparticles with mean diameter of 4-5 nm were obtained by the laser pyrolysis technique and the mixtures of water and nanoparticles are prepared using an ultrasonic homogenizer. Effects of TPCT inclination angle, operating temperature and nanoparticles concentration levels on the heat transfer characteristics of TPCT are considered. The nanoparticles have a significant effect on the enhancement of heat transfer characteristics of TPCT. The heat transfer characteristics of TPCT with the nanofluids are compared with that the based fluid.  相似文献   

7.
An effective thermal spreader can achieve uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Flat plate heat pipe is one of the highly effective thermal spreaders. Magnetic fluid is liquid and can be moved by the force of magnetic field. Therefore, the magnetic fluid is suitable to be used as the working fluid of flat plate heat pipes which have a very small gap between evaporation and condensation surfaces. We prepared a disk-shaped wickless flat plate heat pipe, and the distance between evaporation and condensation surfaces is only 1 mm. From experimental study, the effect of heat flux and working fluid ratio on the performance of flat plate heat pipe is presented. Also we compared the experimental results between the performance of water and magnetic fluid as working fluids.  相似文献   

8.
In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.  相似文献   

9.
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of ?90?, evaporator temperature of 125?C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.  相似文献   

10.
The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400?mm long horizontal copper tube of 4.6?mm inner diameter. The experiments were conducted at refrigerant mass flux of 400–800?kg/m2s, and saturation temperature of 20–30?°C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and ?7.6?%, respectively.  相似文献   

11.
Heat transfer coefficients in nucleate pool boiling of binary and ternary non-azeotropic hydrocarbon mixtures were obtained experimentally using a vertical electrically heated cylindrical carbon steel surface at atmospheric pressure with several surface roughness. The fluids used were Methanol/1-Pentanol and Methanol/1-Pentanol/1,2-Propandiol at constant 1,2-Propandiol mole fraction of 30%. Heat fluxes were varied in the range 25–235 kW/m2. The cylindrical heater surface was polished to an average surface roughness of 0.2 μm, and sandblasted yielding surface roughness of 2.98 and 4.35 μm, respectively. The experimental results were compared to available prediction correlations, indicating that the correlations based on the boiling range are in better qualitative agreement than correlations based on the phase envelope. Increasing surface roughness resulted in an increase in the heat transfer coefficient, and the effect was observed to be dependent on the heat flux and fluid composition.  相似文献   

12.
A method is developed to capture the distribution of surface temperature while simultaneously imaging the bubble motions in diabatic flow boiling in a horizontal minichannel. Liquid crystal thermography is used to obtain highly resolved surface temperature measurements on the uniformly heated upper surface of the channel. High-speed images of the flow field are acquired simultaneously and are overlaid with the thermal images. The local surface temperature and heat transfer coefficient can be analyzed with the knowledge of the nucleation site density and location, and bubble motion and size evolution. The horizontal channel is 1.2 mm high × 23 mm wide × 357 mm long, and the working fluids are Novec 649 and R-11. Optical access is through a machined glass plate which forms the bottom of the channel. The top surface is an electrically heated 76 μm-thick Hastelloy foil held in place by a water-cooled aluminum and glass frame. The heat loss resulting from this construction is computed using a conduction model in Fluent. The model is driven by temperature measurements on the foil, glass plate and aluminum frame. This model produces a corrected value for the local surface heat flux and enables the computation of the bulk fluid temperature and heat transfer coefficient along the channel. The streamwise evolution of the heat transfer coefficient for single-phase laminar flow is compared to theoretical values for a uniform-flux boundary condition. Examples of the use of the facility for visualizing subcooled two-phase flows are presented. These examples include measurements of the surface temperature distribution around active nucleation sites and the construction of boiling curves for locations along the test surface. Points on the curve can be associated with specific image sequences so that the role of mechanisms such as nucleation and the sliding of confined bubbles may be discerned.  相似文献   

13.
This paper presents some experimental results of an extensive research on a novel oscillating heat pipe. The heat pipe is formed of three interconnected columns as different from the pulsating heat pipe designs. The dimensions of the heat pipe considered in this study are large enough to neglect the effect of capillary forces. Thus, the self-oscillation of the system is driven by the gravitational force and the phase lag between the evaporation and condensation processes. The overall heat transfer coefficient is found to be approximately constant irrespective of heat load for the experimental cases considered. The results are also compared with the previously published data by other investigators for water as the working fluid and for the same heat input range. The experimental data for the time variation of the liquid column heights and the vapor pressure are correlated algebraically, convenient for practical uses.  相似文献   

14.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

15.
This paper presents an experimental study of an open loop pulsating heat pipe (OLPHP) of 0.9 mm inner diameter. The performance characterization has been done using four working fluids at vertical and horizontal orientations. Water, Methanol, 2-Propanol and Acetone has been employed as the working fluid with 50% fill ratio. The experimental results indicate a strong influence of gravity and thermo physical properties of the working fluids on the performance of OLPHP. Considering all the working fluids used, Water has shown better thermal performance in vertical orientation while Methanol has shown better performance in horizontal orientation. All the working fluids perform better at horizontal orientation.  相似文献   

16.
Distilled water and nitrogen gas used as the working fluids flow through the stainless steel microtube with inner diameter 168 μm outer diameter 406 μm. Using the Joule heating, the wall temperature field photos of the microtube is acquired by employing an IR camera and the temperature and the volume flow rate of the inlet and the outlet of microtube are measured. A correlation between the axial wall heat conduction and the convective heat transfer is obtained by theoretical analysis based on the experimental results. The investigative results clearly show that the axial heat conduction can reduce the convective heat transfer in the stainless steel microtube and the decrement may reach 2% compared to the convective heat transfer when the working fluid is nitrogen gas, however, the decrement can be neglected for distilled water as the working fluid.  相似文献   

17.
Turbulent flow of nanofluids based on the distilled water with aluminum and silicon oxide particles of different sizes in a cylindrical channel is studied. The results of the measurements of the heat transfer coefficient and the pressure difference are presented. The maximum volume concentration of the particles was not greater than two percents. The dependence of the heat transfer coefficient on the nanoparticle concentration and their sizes and material is studied. It is shown that a considerable increase in the nanofluid heat transfer coefficient, compared with the corresponding value for water, may generally be expected. At the same time, the heat transfer coefficient of a nanofluid depends on the nanoparticle size and material; because of this, under certain conditions the nanofluid heat transfer coefficient can turn out to be lower than that of the baseline fluid. Situations, when this can occur, are established. It is for the first time experimentally shown that the nanofluid viscosity coefficient depends not only on the nanoparticle size but also on its material.  相似文献   

18.
The effect of time-dependent pressure pulsations on heat transfer in a pipe flow with constant temperature boundaries is analysed numerically when the viscosity of the pulsating fluid is an inverse linear function of the temperature. The coupled differential equations are solved using Crank-Nicholson semi-implicit finite difference formulation with some modifications.The results indicate local variations in heat transfer due to pulsations. They are useful in the design of heat exchangers working under pulsating flow conditions. The analytical results are presented for both heating and cooling. The conditions under which pulsating flows can augment the heat transfer are discussed. The results are applicable for heat exchangers with fluids of high Prandtl number.  相似文献   

19.
The paper presents the results of an experimental study that was carried out to determine turbulent friction and heat transfer characteristics of four spirally corrugated tubes, which have various geometrical parameters, with water and oil as the working fluids. Experiments were performed under conditions of Reynolds number varying from 6000 to 93,000 for water, and from 3200 to 19,000 for oil, respectively. The results show that the thermal performance of these tubes was superior compared to a smooth tube, but the heat transfer enhancements were not as large as the friction factor increases. Friction factors and heat transfer coefficient in these rough tubes were analyzed on the basis of momentum and heat transfer analogy, and the correlations obtained were compared with the present data and also the results of previous investigators. A mathematical model to evaluate the performance of spirally corrugated tube, which takes account of the large variation of fluid Prandtl number with temperature, was developed by the extension of previous work of Bergles and Webb. The results reported enable practical designs with standard products and optimization of tube geometry for specific conditions.  相似文献   

20.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号