首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We investigate a biomimetic model of a TyrZ/His190 pair, a hydrogen‐bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light‐induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one‐electron transfer from the phenol to the porphyrin radical cation coupled with a domino two‐proton transfer leading to the ejection of a proton from the imidazole–phenol pair. The second phase concerns conveying the released proton to the porphyrin N4 coordinating cavity. Our study provides an unprecedented example of a light‐induced electron‐transfer process in a TyrZ/His190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway.  相似文献   

2.
355 nm光照下利用瞬态吸收光谱技术进行了有氧、无氧条件下二苯醚与亚硝酸体系的反应机理研究, 考察了其中瞬态物种的衰减行为, 并对其光解产物进行了GC-MS分析. 研究表明, HNO2在355 nm紫外光的照射下产生的OH自由基和二苯醚反应生成C12H10O-OH 加合物, N2条件下C12H10O-OH衰减的速率常数为(1.86±0.14)×105 s-1, 在有氧条件下, C12H10O-OH可转化为C12H10O-OHO2, 衰减的速率常数为(6.6±0.4)×106 s-1. N2条件下最终产物为苯酚、2-羟基二苯醚、4-羟基二苯醚、4-硝基二苯醚.  相似文献   

3.
The photochemical behavior of quaternary ammonium salts (QA salts) with N,N‐dimethyldithiocarbamate as photobase generators and the photoinitiated thermal crosslinking of poly(glycidyl methacrylate) (PGMA) with the QA salts were investigated. The formation of basic compounds in the photolysis of 1‐phenacyl‐(1‐azonia‐4‐azabicyclo[2,2,2]octane) N,N‐dimethyldithiocarbamate was ascertained by the color change of phenol red as an acid–base indicator. 1H NMR spectra of photoproducts in CDCl3 under N2 showed that the photolysis of 1‐naphthoylmethyl‐(1‐azonia‐4‐azabicyclo[2,2,2]octane) N,N‐dimethyldithiocarbamate resulted in the quantitative formation of triethylenediamine and a dithiocarbamate derivative. The presence of oxygen in the photolysis decreased the photolysis rate. The amine was also detected in its photolysis in polystyrene films. The effects of ammonio groups and counteranions of QA salts on the photoinitiated thermal crosslinking of PGMA films were also investigated. Quaternary ammonium dithiocarbamates acted as excellent photobase generators and effective photoinitiated thermal crosslinkers for PGMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1329–1341, 2001  相似文献   

4.
Vacuum ultraviolet photolysis of phenol, phenol-d6 and anisole during condensation with excess argon at 20 K has produced and trapped the phenoxyl radical as evidenced by structured absorptions at 397.2 and 628.1 nm. A broad photosensitive 416 ± 2 nm band is tentatively assigned to the phenol cation.  相似文献   

5.
The effect of the addition of hydrogen chloride on the photolysis of carbon tetrachloride in the presence of cyclohexane has been investigated in a companion paper. The data enable the rate constant ratio k8/(k5)1/2 to be determined. Since k?8 is well established, k5 can be estimated from known thermochemical data. The validity of the thermochemical derivation is checked by applying it to trifluoromethyl radicals. The photolysis of bromotrichloromethane and carbon tetrachloride in the presence of hydrogen chloride has been investigated over a range of temperatures. From these results and assuming reaction (5) has no activation energy, Arrhenius parameters for reaction (8) have been determined: The activation energies for the reaction of methyl, trichloromethyl, and trifluoromethyl radicals with hydrogen chloride are compared, and at first sight surprising results are rationalized in terms of relative electronegativity.  相似文献   

6.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

7.
In the present study, H2O2/UV-C, Fenton and photo-Fenton treatment of 2,4-dichlorophenol was compared in terms of oxidation products and acute toxicity. The oxidation products were identified by gas chromatography-mass spectroscopy, high performance liquid chromatography and ion chromatography, whereas changes in acute toxicity were evaluated by the Vibrio fischeri luminescence inhibition assay. H2O2/UV-C and photo-Fenton processes ensured complete 2,4-dichlorophenolremoval, detoxification and significant mineralization. Hydroquinone and formic acid were identified as the common oxidation products of the studied advanced oxidation processes investigated. 3,5-dichloro-2-hydroxybenzaldehyde, phenol, 4-chlorophenol and 2,5-dichlorohydroquinone were identified as the additional H2O2/UV-C oxidation products of 2,4-dichlorophenol. Acute toxicity decreased with decreasing 2,4-dichlorophenol and increasing chloride release.  相似文献   

8.
The quantum yield of the photolysis of 2-mercaptobenzothiazole (MBT) in the molecular form increases by a factor of 20 in the presence of the surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPCl) in comparison with aqueous solution. In the photolysis of the MBT ionic form, the quantum yield does not change in the presence of CTAB and decreases in the presence of CPCl. The maximums of the MBT absorption spectra shift with an increase in the surfactant concentration for both the molecular and ionic forms. Simultaneously, the MBT photolysis quantum yield increases. It has been shown that the quantum yield of MBT photolysis in water increases in the presence of compounds containing heavy atoms.  相似文献   

9.
Studies on photo-catalytic degradation of benzene using TiO2 photo-catalyst as a suspension in water is reported. Degradation studies have been carried out using 350 nm UV light. Phenol, a photo-catalytic product of benzene, was monitored under varying experimental conditions such as amount of TiO2, concentration of benzene, photolysis time, ambient (air, O2, Ar, N2O and N2O–O2 mixture), etc. The phenol yields in both aerated and O2-purged systems increased with the photolysis time. In contrast to oxygenated systems, the yields of phenol in deoxygenated (viz. Ar-purged and N2O-purged) systems were quite low (~30 μM) and remained steady. H2O2 yields in all these systems were also monitored, and found lower than an order of magnitude as compared to phenol yields for the respective systems. The rate of phenol production in aerated 1 mM benzene solution containing 0.05% TiO2 suspension was evaluated at 12.3 μM min−1 which is lower than the rate obtained in an O2-saturated system (22.4 μM min−1). The low yields of phenol in both Ar- and N2O-purged systems, and also the increasing trends in oxygenated systems, together reveal that, for the phenol formation with an enhanced rate, oxygen is essential. In the present study, it is implied that the photo-generated hole, which is mainly an OH radical, is either freely available in the aqueous phase or migrates to the aqueous phase from the catalyst surface, to react with benzene to produce HO-adduct radical. Later, following reaction with oxygen, the adduct produces phenol. On the other hand, h+ and surface adsorbed OH radical, being trapped/bonded due to rigid association with the catalyst surface, were not able to generate phenol under similar experimental conditions. The mechanism of phenol formation with TiO2 photolysis in an aqueous system is rechecked, on the basis of present results on h+/surface adsorbed OH radical/unbound OH radical scavenging by benzene, collectively with previous reports on various systems.  相似文献   

10.
This study examined processes of decomposing phenol and its derivatives (resorcin, pyrocatechol and hydroquinone) in aqueous solutions under the action of an atmospheric pressure oxygen dielectric barrier discharge in the presence or absence of catalysts in the plasma zone. Two types of catalysts were tested, NiO and TiO2. It was found that both materials exhibited catalytic properties. The action of NiO accelerated the step of phenol destruction while the action of TiO2 catalyst resulted in a more preferable composition of decomposition products and provided a higher degree of carboxylic acid conversion into carbon dioxide than the NiO catalyst.  相似文献   

11.
Studies on the photo-catalytic redox reaction of C1–C3 alcohols such as methanol, ethanol and 2-propanol were carried out in aqueous solution containing TiO2 photocatalyst (0.1% w/v) as suspension using 350 nm light. Other hydrocarbons such as ethane and ethene in the case of ethanol, and propene in the case of 2-propanol with low yields were produced along with the major photolytic products methane and carbon dioxide. The yields of methane and CO2 were found to be dependent on the light exposure time and ambient conditions. Methane yields were higher in 2-propanol and ethanol systems than in methanol system, showing their better hole-scavenging properties. In the aerated condition, methane was produced during photolysis of all alcohols in the presence of TiO2 and the yield was comparable to those observed in the corresponding CO2-saturated systems. The overall results reveal that the surface adsorbed, as well as in-situ-generated CO2 from photo-oxidation of alcohols are equally responsible for methane formation through photo-reduction in presence of TiO2. In the O2-saturated system, the methane yield was lower as compared to that in aerated system, in contrast to the CO2 yield. In N2O-and N2-purged systems, the yield of methane was observed to be low, inferring that the methane generation has not taken place through photodecomposition/photodissociation of alcohols. Again, photolysis of alcohols without TiO2 did not generate any methane.  相似文献   

12.
A dynamic kinetic model for the oxidation of phenol in water by an UV/H2O2 process is developed. The model is based on the elementary chemical and photochemical reactions, initiated by the photolysis of hydrogen peroxide into hydroxyl radicals. The model is validated by using experimental data obtained from the open literature for an actual UV/H2O2 process. Using those data and the developed kinetic model, kinetic rate constants for phenol intermediates, catechol and hydroquinone, are estimated. Moreover, the optimum initial hydrogen peroxide concentration is estimated by means of the validated model. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 34–43, 2008  相似文献   

13.
The oxidation of phenol on the RuO2–TiO2/Ti electrode has been studied by cyclic voltammetry, polarization measurements, electrochemical impedance spectroscopy and potentiostatic transients in H2SO4 and NaCl aqueous solutions. A reaction path with polymerization as the main reaction and side reactions after the initial step, similar to the reaction path on other electrode materials, is suggested. The formation of a phenoxy radical in a diffusion-controlled irreversible process is the initial step. The polymerization of phenoxy radicals leads to the formation of porous polyoxyphenylene film, strongly adherent to the electrode surface. The cyclic voltammetry measurements indicate side products, which could be, according to the literature, of quinone-like structure. Polyoxyphenylene film inhibits further oxidation of phenol, although complete electrode passivation was not observed. The presence of polyoxyphenylene film does not influence the pseudocapacitive behaviour of the electrode to a great extent, since the polyoxyphenylene film covers dominantly the coating surface, while active sites placed within coating cracks remain uncovered. The film seems to be permeable for hydrogen ions and water molecules.  相似文献   

14.
Ruthenium(II) polypyridyl complexes with macromolecular ligands poly(methylolacrylamide-co-vinylpyridine) and poly (acrylamide-co-vinylpyridine) have been synthesized. The macromolecular ruthenium (II) complexes which are soluble in water have been characterized and their absorption and emission properties have been studied in aqueous solution. Photolysis of the complex in aqueous solution leads to photoaquation reactions with release of coordinated pyridines of the polymer. In the case of monomeric complex, cis-[Ru(bpy)2(py)2]Cl2, photolysis in water in presence of Cl? ions produces only the substitution of the pyridine by water whereas in the polymeric complexes, [Ru(bpy)2(MAAM-co-VP)2]Cl2 photolysis in the presence of chloride produces [Ru(bpy)2(MAAM-co-VP)Cl]Cl and [Ru(bpy)2(AM-co-VP)Cl]Cl, respectively. Quantum yields for the photosubstitution reactions have been determined and mechanistic details are outlined.  相似文献   

15.
TiO_2光催化失活复活特性与表面NO_3~-浓度的关系   总被引:1,自引:0,他引:1  
以乙醛作为活性标的,通过人为控制表面附着NO3-浓度,检测TiO2对乙醛的吸附能力和光催化降解能力,得出了TiO2光催化失活复活特性和表面附着NO3-浓度的定量关系。结果表明,表面附着NO3-浓度达到4.24wt%时,光催化降解能力降低50%;表面附着NO3-浓度达到10.50wt%时,TiO2的吸附能力降低50%;通过溢流状态下水洗2h,可除去98%的表面附着NO3-,使TiO2光催化活性复活。  相似文献   

16.
    
The collision-free, room temperature gas-phase photodissociation dynamics of CH3CFCl2 (HCFC-141b) was studied using Lyman-α laser radiation (121.6 nm) by the laser photolysis/laser-induced fluorescence ‘pump/probe’ technique. Lyman-α radiation was used both to photodissociate the parent molecule and to detect the nascent H atom products via (2p 2P → 1s 2S) laser-induced fluorescence. Absolute H atom quantum yield, ϕH = (0.39 ± 0.09) was determined by calibration method in which CH4 photolysis at 121.6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity distribution suggesting the presence of indirect H atom formation pathways in the Lyman-α photodissociation of CH3CFCl2. The average kinetic energy of H atoms calculated from Doppler profiles was found to be E T(lab) = (50 ± 3) kJ/mol. The nearly statistical translational energy together with the observed Maxwell-Boltzmann velocity distribution indicates that for CH3CFCl2 the H atom forming dissociation process comes closer to the statistical limit.  相似文献   

17.
Sulfonephthaleins can be synthesized in a single pot from saccharin and phenol via the in situ formation of 2-sulfobenzoic anhydride, followed by its reaction with phenol using H2SO4 as the condensing agent, in the absence of any solvent. This solvent-free synthesis is more economical and environmentally benign.  相似文献   

18.
The interaction of pentafluorobenzaldehyde with RCCl3 (R = Cl, Ph, C6F5) in the presence of threefold molar excess of AlCl3 proceeds with replacing the oxygen atom of the aldehyde group by two chlorine atoms from the CCl3 group and results in the formation of pentafluorobenzylidene chloride. The electrophilic mechanism of the reaction is proposed.  相似文献   

19.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

20.
以反相微乳液法和沉淀法相结合制备了核壳结构TiO2@SiO2,首次用于碳酸二甲酯与苯酚酯交换合成碳酸二苯酯反应,显示较好的催化活性. 采用200 ℃焙烧的TiO2@SiO2,用量0.20 g,反应9 h,苯酚转化率达41.8%,酯交换选择性为100%. 透射电镜显示TiO2@SiO2核厚壳薄,TiO2核直径220-300 nm,SiO2壳厚度40-60 nm,具有介孔结构. TiO2@SiO2对碳酸二甲酯与苯酚酯交换反应有好的重复使用性,使用4次苯酚转化率仍保持在40%以上. TiO2与SiO2发生相互作用,Ti进入骨架形成Ti-O-Si键,骨架Ti的形成提高了TiO2@SiO2的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号