首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.  相似文献   

2.
Cis and trans sugar edge/sugar edge (SE/SE) binding patterns are essential building units of RNAs. For example, SE/SE interactions form the A-minor motifs, the most important tertiary interaction type in functional RNAs. This study provides an in-depth structure and stability analysis for these two base pair families. Gas-phase-optimized geometries are reported for 12 cis and 7 trans SE/SE base pairs and contrasted to their X-ray counterparts. Interaction energies are computed at the RIMP2 level of theory using the density-functional-theory-optimized geometries. There is a good overall agreement between the optimized and X-ray geometries of the cis SE/SE base pairs. In contrast, only three of the seven trans SE/SE binding patterns could be optimized without a significant distortion of the X-ray geometry. Note, however, that many SE/SE base pairs participate in broader networks of interactions; thus it is not surprising to see some of them to deviate from the X-ray geometry in a complete isolation. Computed interaction energies reveal that all 12 known cis SE/SE binding patterns are very stable. Among the trans SE/SE binding patterns, only the rG/rG, rG/rC, and rA/rG base pairs are sufficiently stable in the crystal geometry. Prediction has been made for some structures not yet detected by crystallography, namely, cis rC/rC, rG/rC, rG/rU, and rU/rU and trans rG/rA base pairs. Interestingly, the new cis SE/SE binding patterns are not necessarily isosteric with the remaining 12 members of this family. The trans rG/rA base pair represents a viable option for base pairing in RNA to be identified by future X-ray studies. In a complete lack of structural information, prediction of other unknown members of the trans SE/SE family was not attempted. Analysis of the interaction energies shows a very large electron correlation component of the interaction energy, pointing at the elevated role of dispersion energy as compared to other types of base pairs. This likely is profitable for stabilization of SE/SE binding patterns in polar environments and could be one of the reasons why the A-minor motif is the leading type of tertiary interactions in RNAs.  相似文献   

3.
The structure and function of RNA molecules are substantially affected by non-Watson-Crick base pairs actively utilizing the 2'-hydroxyl group of ribose. Here we correlate scalar coupling constants across the noncovalent contacts calculated for the cis- and trans-WC/SE (Watson-Crick/sugar edge) RNA base pairs with the geometry of base to base and sugar to base hydrogen bond(s). 23 RNA base pairs from the 32 investigated were found in RNA crystal structures, and the calculated scalar couplings are therefore experimentally relevant with regard to the binding patterns occurring in this class of RNA base pairs. The intermolecular scalar couplings 1hJ(N,H), 2hJ(N,N), 2hJ(C,H), and 3hJ(C,N) were calculated for the N-H...N and N-H...O=C base to base contacts and various noncovalent links between the sugar hydroxyl and RNA base. Also, the intramolecular 1J(N,H) and 2J(C,H) couplings were calculated for the amino or imino group of RNA base and the ribose 2'-hydroxyl group involved in the noncovalent interactions. The calculated scalar couplings have implications for validation of local geometry, show specificity for the amino and imino groups of RNA base involved in the linkage, and can be used for discrimination between the cis- and trans-WC/SE base pairs. The RNA base pairs within an isosteric subclass of the WC/SE binding patterns can be further sorted according to the scalar couplings calculated across different local noncovalent contacts. The effect of explicit water inserted in the RNA base pairs on the magnitude of the scalar couplings was calculated, and the data for discrimination between the water-inserted and direct RNA base pairs are presented. The calculated NMR data are significant for structural interpretation of the scalar couplings in the noncanonical RNA base pairs.  相似文献   

4.
The four nucleic acid DNA bases(adenine, thymine, guanine, cytosine) and ten cis Watson-Crick/Watson-Crick(cis WC/WC) DNA base pairs were investigated by density functional theory(DFT) quantum chemical calculations. Geometry optimizations were carried out on the four bases and ten base pairs at the B3LYP level with 6-31G~(**) basis set. All the optimizations were performed within Cs symmetry. The optimum structures for the four bases and seven cis WC/WC base pairs were obtained, and Natural Bond Orbital analysis(NBO) was based on these structures. The possibilities of matches between any two of the four bases through their Watson-Crick(WC) edges were discussed. The structures of seven cis WC/WC base pairs change to a certain extent relative to these of the four bases due to the formation of hydrogen bonds. These base pairs existing in DNA have an important influence on the structural stability of the double helix. The analysis of the electronic structures and molecular orbitals for seven cis WC/WC base pairs can provide significant information about the relationship between charge transfer along the hydrogen bond and the Frontier orbitals of these base pairs.  相似文献   

5.
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.  相似文献   

6.
Preceding NMR experiments show that the conformation of tandem GA base pairs, an important recurrent non-canonical building block in RNA duplexes, is context dependent. The GA base pairs adopt "sheared" N3(G)-N6(A), N2(G)-N7(A) geometry in the r(CGAG)(2) and r(iGGAiC)(2) contexts while switching to "imino" N1(G)-N1(A), O6(G)-N6(A) geometry in the r(GGAC)(2) and r(iCGAiG)(2) contexts (iC and iG stand for isocytosine and isoguanine, respectively). As base stacking is likely to be one of the key sources of the context dependence of the conformation of GA base pairs, we calculated base stacking energies in duplexes containing such base pairs, to see if this dependence can be predicted by stacking energy calculations. When investigating the context dependence of the GA geometry two different conformations of the same duplex were compared (imino vs. sheared). The geometries were generated via explicit solvent MD simulations of the respective RNA duplexes, while the subsequent QM energy calculations focused on base stacking interactions of the four internal base pairs. Geometrical relaxation of nucleobase atoms prior to the stacking energy computations has a non-negligible effect on the results. The stacking energies were derived at the DFT-D/6-311++G(3df,3pd) level. We show a rather good correspondence between the intrinsic gas-phase stacking energies and the NMR-determined GA geometries. The conformation with more favorable gas-phase stacking is in most cases the one observed in experiments. This correlation is not improved when including solvent effects via the COSMO method. On the other side, the stacking calculations do not predict the relative thermodynamic stability of duplex formation for different sequences.  相似文献   

7.
Complex molecular shapes of ribosomal RNA molecules are stabilized by recurrent types of tertiary interactions involving highly specific and conserved non-Watson-Crick base pairs, triplets, and quartets. We analyzed the intrinsic structure and stability of the P-motif and the four basic types of A-minor interactions (types I, II, III, and 0), which represent the most prominent RNA tertiary interaction patterns refined in the course of evolution. In the studied interactions, the electron correlation component of the stabilization usually exceeds the Hartree-Fock (HF) term, leading to a strikingly different balance of forces as compared to standard base pairing stabilized primarily by the HF term. In other words, the A-minor and P-interactions are considerably more influenced by the dispersion energy as compared to canonical base pairs, which makes them particularly suitable to zip the folded RNA structures that are substantially hydrated even in their interior. Continuum solvent COSMO calculations confirm that the stability of the canonical GC base pair is affected (reduced) by the continuum solvent screening considerably more than the stability of the A-minor interaction. Among the studied systems, the strong A-minor II and weak A-minor III interactions require water molecules to stabilize the experimental geometry. Gas-phase optimization of the canonical A-minor II A/CG triplet without water results in a geometry that is clearly inconsistent with the RNA structure. The gas-phase structure of the P-interaction and the most stable A-minor I interaction nicely agrees with the geometries occurring in the ribosome. A-minor I can also adopt an alternative water-mediated substate rather often observed in X-ray and molecular dynamics studies. The A-minor I water bridge, however, does not appear to stabilize the tertiary contact, and its role is to provide structural flexibility to this binding pattern within the context of the RNA structure. Interestingly, the insertion of a polar water molecule in the A-minor I A/CG tertiary contact occurring in the A/C tertiary pair is stabilized primarily by the HF (electrostatic) interaction energy, while the dispersion-controlled A/G contact remains firmly bound. Thus, the intrinsic balance of forces as revealed by quantum mechanics (QM) calculations nicely correlates with many behavioral aspects of the studied interactions inside RNA. The comparison of interaction energies computed using quantum chemistry and an AMBER force field reveals that common molecular mechanics calculations perform rather well, except that the strength of the P-interaction is modestly overestimated. We also briefly discuss the non-negligible methodological differences when evaluating simple base-base nucleic acids base pairs and the complex RNA tertiary base pairing patterns using QM procedures.  相似文献   

8.
The potential energy change during the M --> N process in bacteriorhodopsin has been evaluated by ab initio quantum chemical and advanced quantum chemical calculations following molecular dynamics (MD) simulations. Many previous experimental studies have suggested that the proton transfer from Asp96 to the Schiff base occurs under the following two conditions: (1) the hydrogen bond between Thr46 and Asp96 breaks and Thr46 is detached from Asp96 and (2) a stable chain of four water molecules spans an area from Asp96 --> Schiff base. In this work, we successfully reproduced the proton-transfer process occurring under these two conditions by molecular dynamics and quantum chemical calculations. The quantum chemical computation revealed that the proton transfer from Asp96 to Shiff base occurs in two-step reactions via an intermediate in which an H(3)O(+) appears around Ala215. The activation energy for the proton transfer in the first reaction was calculated to be 9.7 kcal/mol, which enables fast and efficient proton pump action. Further QM/MM (quantum mechanical/molecular mechanical) and FMO (fragment molecular orbital) calculations revealed that the potential energy change during the proton transfer is tightly regulated by the composition and the geometry of the surrounding amino acid residues of bacteriorhodopsin. Here, we report in detail the Asp96 --> Schiff base proton translocation mechanism of bacteriorhodopsin. Additionally, we discuss the effectiveness of combining quantum chemical calculations with truncated cluster models followed by advanced quantum chemical calculations applied to a whole protein to elucidate its reaction mechanism.  相似文献   

9.
Non-canonical base pairs contribute immensely to the structural and functional variability of RNA, which calls for a detailed characterization of their spatial conformation. Intra-base pair parameters, namely propeller, buckle, open-angle, stagger, shear and stretch describe structure of base pairs indicating planarity and proximity of association between the two bases. In order to study the conformational specificities of non-canonical base pairs occurring in RNA crystal structures, we have upgraded NUPARM software to calculate these intra-base pair parameters using a new base pairing edge specific axis system. Analysis of base pairs and base triples with the new edge specific axis system indicate the presence of specific structural signatures for different classes of non-canonical pairs and triples. Differentiating features could be identified for pairs in cis or trans orientation, as well as those involving sugar edges or C-H-mediated hydrogen bonds. It was seen that propeller for all types of base pairs in cis orientation are generally negative, while those for trans base pairs do not have any preference. Formation of a base triple is seen to reduce propeller of the associated base pair along with reduction of overall flexibility of the pairs. We noticed that base pairs involving sugar edge are generally more non-planar, with large propeller or buckle values, presumably to avoid steric clash between the bulky sugar moieties. These specific conformational signatures often provide an insight into their role in the structural and functional context of RNA.  相似文献   

10.
Molecular dynamics free-energy calculations of base pair opening within double helical DNA and RNA are used to explain why A-tracts (oligo-adenine repeats) greatly increase the lifetimes of AT base pairs, whereas the structural and the chemical changes involved in passing from B-DNA to A-RNA have comparatively small effects.  相似文献   

11.
用量子化学计算研究了正规Watson-Crick碱基对和四例典型的错配碱基对.对碱基单体和二聚体进行了详细的非谐性频率分析,以揭示其结构方面的一些振动特征.研究发现这些振动特征能在模拟的一维和二维红外光谱中很好地表现出来.利用势能分布研究了所选简正模式的离域化程度,发现从孤立的碱基单体到参与氢键的二聚体,模式的离域化程度变化很大;同时,这些模式的非谐性常数也发生了相应的改变.以人们通常认为的位于红外光谱中6-μm波长区域的羰基伸缩模式为例进行了探讨.  相似文献   

12.
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.  相似文献   

13.
The dynamic structure and potential energy surface of adenine...thymine and guanine...cytosine base pairs and their methylated analogues interacting with a small number (from 1 to 16 molecules) of organic solvents (methanol, dimethylsulfoxide, and chloroform) were investigated by various theoretical approaches starting from simple empirical methods employing the Cornell et al. force field to highly accurate ab initio quantum chemical calculations (MP2 and particularly CCSD(T) methods). After the simple molecular dynamics simulation, the molecular dynamics in combination with quenching technique was also used. The molecular dynamics simulations presented here have confirmed previous experimental and theoretical results from the bulk solvents showing that, whereas in chloroform the base pairs create hydrogen-bonded structures, in methanol, stacked structures are preferred. While methanol (like water) can stabilize the stacked structures of the base pairs by a higher number of hydrogen bonds than is possible in hydrogen-bonded pairs, the chloroform molecule lacks such a property, and the hydrogen-bonded structures are preferred in this solvent. The large volume of the dimethylsulfoxide molecule is an obstacle for the creation of very stable hydrogen-bonded and stacked systems, and a preference for T-shaped structures, especially for complexes of methylated adenine...thymine base pairs, was observed. These results provide clear evidence that the preference of either the stacked or the hydrogen-bonded structures of the base pairs in the solvent is not determined only by bulk properties or the solvent polarity but rather by specific interactions of the base pair with a small number of the solvent molecules. These conclusions obtained at the empirical level were verified also by high-level ab initio correlated calculations.  相似文献   

14.
Empirical, quantum chemical calculations and molecular dynamics simulations of the role of a solvent on tautomerism of nucleic acid bases and structure and properties of nucleic acid base pairs are summarized. Attention was paid to microhydrated (by one and two water molecules) complexes, for which structures found by scanning of empirical potential surfaces were recalculated at a correlated ab initio level. Additionally, isolated as well as mono- and dihydrated H-bonded, T-shaped and stacked structures of all possible nucleic acid base pairs were studied at the same theoretical levels. We demonstrate the strong influence of a solvent on the tautomeric equilibrium between the tautomers of bases and on the spatial arrangement of the bases in a base pair. The results provide clear evidence that the prevalence of either the stacked or hydrogen-bonded structures of the base pairs in the solvent is not determined only by its bulk properties, but rather by specific hydrophilic interactions of the base pair with a small number of solvent molecules.  相似文献   

15.
采用ONIOM(M06-2X/6-31G*:PM3)方法研究了单个鸟嘌呤-胞嘧啶(GC)碱基对和含GC碱基对的四种排序的DNA三聚体(dATGCAT, dGCGCGC, dTAGCTA, dCGGCCG)的双质子转移反应. 通过分析其双质子转移方式、质子转移过程中各结构的能量和氢键变化, 总结出环境因素对GC碱基对双质子转移机理的影响. 气相中, dCGGCCG三聚体中发生分步双质子转移, 其它四种模型中均发生协同双质子转移. 分析发现质子转移方式受上下相邻碱基对的静电相互作用和质子接受位的质子亲和势影响, dATGCAT和dGCGCGC排序有助于质子H4a转移, 而dTAGCTA和dCGGCCG排序有助于质子H1转移, 胞嘧啶的N3位较高的质子亲和势有助于质子H1转移. 水溶剂中, 上下相邻碱基对的静电相互作用被减弱, 水溶剂稳定了分步转移过程中的单质子转移产物, 因此分步转移机理占据优势, 五种模型中均出现分步双质子转移, 在此过程中能量变化趋势相似. 溶剂效应有利于单质子转移, 却增加了双质子转移反应的反应能.  相似文献   

16.
A new base pair (called κ–π) of Watson–Crick type, with a H -bond pattern different from that in A –T and G –C base pairs, has been recently synthesized and shown to be stable and incorporable into duplex DNA and RNA by polymerases. This new basepair, which contains three H -bonds, is compared with G –C , in the framework of modern dynamical theory of quantum nonlocality and quantum correlations. Connection with the traditional treatment of proton transfer in DNA base pairs, which uses the adiabatic approximation, is explicitly made. As a result, the dynamics of the H -bond pattern of G –C is shown to exhibit a specific quantum mechanical phase stability, which is clearly missing in the case of κ–π. This finding is discussed and illustrated, also in connection with recent quantum chemical calculations of proton transfers in DNA base pairs. Additionally, certain speculations concerning the “evolutionary advantage” of G –C with respect to κ–π are briefly considered. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
RNA tertiary interactions or tertiary motifs are conserved structural patterns formed by pairwise interactions between nucleotides. They include base-pairing, base-stacking, and base-phosphate interactions. A-minor motifs are the most common tertiary interactions in the large ribosomal subunit. The A-minor motif is a nucleotide triple in which minor groove edges of an adenine base are inserted into the minor groove of neighboring helices, leading to interaction with a stabilizing base pair. We propose here novel features for identifying and predicting A-minor motifs in a given three-dimensional RNA molecule. By utilizing the features together with machine learning algorithms including random forests and support vector machines, we show experimentally that our approach is capable of predicting A-minor motifs in the given RNA molecule effectively, demonstrating the usefulness of the proposed approach. The techniques developed from this work will be useful for molecular biologists and biochemists to analyze RNA tertiary motifs, specifically A-minor interactions.  相似文献   

18.
The cis,syn-cyclobutane pyrimidine dimer (CPD) is a photoinduced DNA lesion leading to a significant distortion of the DNA structure. Its repair by DNA photolyase requires a flip of the damaged base into an extrahelical position. This base flip is expected to be sequence-dependent, but the structures and energetics as a function of the bases 3' and 5' to the CPD lesion are unknown. Eight-nanosecond MD simulations of four different hexadecamer duplexes with the CPD were performed for the flipped-in and flipped-out structures. Analysis of these results indicates clear sequence-dependent differences. Significant disruptions of the base pairs to the 3' side of the CPD are observed for the flipped-out structures with adjacent A-T pairs, whereas those with G-C pairs adjacent show no such distortions. The conformational spaces occupied by these two duplexes are significantly different. The structural differences correlate well with the free energy differences for base flipping calculated using the previously established 2D potential of mean force (PMF) method. The energy differences for base flipping in duplexes containing A, T, G, and C pairs adjacent to the CPD were found to be 6.25-6.5, 5.25-5.5, 7.25-7.5, and 6.5-6.75 kcal/mol, respectively. These energy differences of up to 2 kcal/mol should be large enough to be detected experimentally using sensitive probes.  相似文献   

19.
Recent ultrafast experiments have implicated intrachain base-stacking rather than base-pairing as the crucial factor in determining the fate and transport of photoexcited species in DNA chains. An important issue that has emerged concerns whether or not a Frenkel excitons is sufficient one needs charge-transfer states to fully account for the dynamics. Here we present an SU(2)  SU(2) lattice model which incorporates both intrachain and interchain electronic interactions to study the quantum mechanical evolution of an initial excitonic state placed on either the adenosine or thymidine side of a model B DNA poly(dA).poly(dT) duplex. Our calculations indicate that over several hundred femtoseconds, the adenosine exciton remains a cohesive excitonic wave packet on the adenosine side of the chain where as the thymidine exciton rapidly decomposes into mobile electron/hole pairs along the thymidine side of the chain. In both cases, the very little transfer to the other chain is seen over the time-scale of our calculations. We attribute the difference in these dynamics to the roughly 4:1 ratio of hole versus electron mobility along the thymidine chain. We also show that this difference is robust even when structural fluctuations are introduced in the form of static off-diagonal disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号