首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The reaction of nona-2,7-diyne, deca-2,8-diyne and hex-1-yne with [RuCp(PR3)(MeCN)2]PF6 (R = Cy, Ph, Me) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, ruthenium metallacyclopentatriene, allyl carbene and/or butadienyl carbene complexes involving either metal-to-ligand-to-metal migration of the phosphine ligand with concomitant C-H activation or a facile 1,2 hydrogen shift.  相似文献   

2.
Reactions between HC triple bond CC triple bond CSiMe3 and several ruthenium halide precursors have given the complexes Ru(C triple bond CC triple bond CSiMe3)(L2)Cp'[Cp'= Cp, L = CO (1), PPh3 (2); Cp' = Cp*, L2= dppe (3)]. Proto-desilylation of 2 and 3 have given unsubstituted buta-1,3-diyn-1-yl complexes Ru(C triple bond CC triple bond CH)(L2)Cp'[Cp'= Cp, L = PPh3 (5); Cp'= Cp*, L2 = dppe (6)]. Replacement of H in 5 or 6 with Au(PR3) groups was achieved in reactions with AuCl(PR3) in the presence of KN(SiMe3)2 to give Ru(C triple bond CC triple bond CAu(PR3)](L2)Cp'[Cp' = Cp, L = PPh3, R = Ph (7); Cp' = Cp*, L2= dppe, R = Ph (8), tol (9)]. The asymmetrically end-capped [Cp(Ph3P)2Ru]C triple bond CC triple bond C[Ru(dppe)Cp*] (10) was obtained from Ru(C triple bond CC triple bond CH)(dppe)Cp* and RuCl(PPh3)2Cp. Single-crystal X-ray structural determinations of and are reported, with a comparative determination of the structure of Fe(C triple bond CC triple bond CSiMe3)(dppe)Cp* (4), and those of a fifth polymorph of [Ru(PPh3)2Cp]2(mu-C triple bond CC triple bond C) (12), and [Ru(dppe)Cp]2(mu-C triple bond CC triple bond C) (13).  相似文献   

3.
The reaction of [RuCp(IPri)(CH3CN)2]PF6 (IPri = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with HCCR (R = COOMe, COOEt, COMe) yields the allyl carbene complexes [RuCp(=C(R)-eta3-CHC(R)CH-IPri)]PF6. This conversion involves selective head-to-tail coupling of two alkynes and an unusual migratory insertion of the N-heterocyclic carbene into the ruthenium-carbon double bond of a ruthenacyclopentatriene intermediate.  相似文献   

4.
Treatment of the hydrido(dihydrogen) compound [RuHCl(H2)(PCy3)2] 1 with alkynes RC[triple bond, length as m-dash]CH (R=H, Ph) afforded the hydrido(vinylidene) complexes [RuHCl(=C=CHR)(PCy3)2] 2, 3 which react with HCl or [HPCy3]Cl to give the corresponding Grubbs-type ruthenium carbenes [RuCl2(=CHCH2R)(PCy3)2] 4, 5. The reaction of 2 (R=H) with DCl, or D2O in the presence of chloride sources, led to the formation of [RuCl2(=CHCH2D)(PCy3)2] 4-d1. Based on these observations, a one-pot synthesis of compounds 4 and 5 was developed using RuCl3.3H2O as the starting material. The hydrido(vinylidene) derivative 2 reacted with CF3CO2H and HCN at low temperatures to yield the carbene complexes [RuCl(X)(=CHCH3)(PCy3)2] 6, 7, of which 7 (X=CN) was characterized crystallographically. Salt metathesis of 2 with CF3CO2K and KI led to the formation of [RuH(X)(=C=CH2)(PCy3)2] 8, 9. The bis(trifluoracetato) and the diiodo compounds [RuX2(=CHCH3)(PCy3)2] 10, 11 as well as the new phosphine P(thp)3 12 (thp=4-tetrahydropyranyl) and the corresponding complex [RuCl2(=CHCH3){P(thp)3}2] 14 were also prepared. The catalytic activity of the ruthenium carbenes 4-7, 10, 11 and 14 in the olefin cross-metathesis of cyclopentene and allyl alcohol was investigated.  相似文献   

5.
The monoynes [Rc*C[triple bond]CRc*] and [Rc'C[triple bond]CRc'] were obtained in improved yields using [Mo(CO)6]/2-FC6H5OH as a catalyst in the alkyne metathesis of [Rc*C[triple bond]CMe] and [Rc'C[triple bond]CMe], respectively (Rc = ruthenocenyl, Rc* = 1',2',3',4',5'-pentamethylruthenocenyl, and Rc' = 2',3',4',5'-tetramethylruthenocenyl groups). The diynes [Rc*(C[triple bond]C)2Rc*] and [Rc'(C[triple bond]C)2Rc'] were synthesized by the oxidative coupling of the corresponding terminal ethynes in good yields. The triyne [Rc*(C[triple bond]C)3Rc*] and the tetrayne [Rc*(C[triple bond]C)4Rc*] were prepared by the hetero- and homocoupling of [Rc*C[triple bond]CC[triple bond]CH], which was obtained from the reaction of [Rc*C[triple bond]CCHO] with Li[N2CSiMe3], respectively. Although the oxidation waves did not always exhibit a clear two-electron oxidation process, the oxidation potentials shifted to a lower potential with an increase in the number of methyl substituents on the ruthenocenyl ring, and shifted to a higher potential with the increase in the number of C[triple bond]C units; this result is in contrast to that found in the [Rc(CH=CH)(n)Rc] series. The chemical oxidation of [Rc'C[triple bond]CRc'] yielded a stable two-electron-oxidized species, the structure of which was confirmed by X-ray crystallography to be [Ru2(mu2-eta(6):eta(6)-C5Me4C=CC5Me4)(eta-C5H5)2](BF4)2. Changing the substituents (Rc, Rc*, and Rc') had no effect on the chemical oxidation, but in the case of the Rc' series the Me substituent increased the stability of the two-electron-oxidized species in solution. The diyne [Rc*(C[triple bond]C)2Rc*] and the triyne [Rc*(C[triple bond]C)3Rc*] also gave a similar but unstable two-electron-oxidized species. In acetone or acetonitrile, the two-electron-oxidized species of [Rc*C[triple bond]CRc*] and [Rc*(C[triple bond]C)2Rc*] gradually formed the corresponding bis(fulvene)-type complexes. This implies that the two-electron-oxidized species of [Rc*(C[triple bond]C)(n)Rc*] are destabilized with the increasing n.  相似文献   

6.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

7.
A series of homoleptic and heteroleptic platinum(ii) complexes [Pt(C[triple bond, length as m-dash]CFc)(2)(L-L)] (L-L = COD , 1,1'-bis(diphenylphosphino)ferrocene (dppf) ), Q(2)[cis/trans-Pt(C(6)F(5))(2)(C[triple bond, length as m-dash]CFc)(2)] (cis, Q = PMePh(3), ; trans, Q = NBu(4), ), (NBu(4))[Pt(bzq)(C[triple bond, length as m-dash]CFc)(2)] (Hbzq = 7,8-benzoquinoline) and (NBu(4))(2)[Pt(C[triple bond, length as m-dash]CFc)(4)] has been synthesized and characterized spectroscopically and the structures of .2CHCl(3), and .2H(2)O.2CH(2)Cl(2) confirmed by single-crystal X-ray studies. The anion of complex , shows strong O-Hpi(C[triple bond, length as m-dash]C) interactions and weaker C-Clpi(C[triple bond, length as m-dash]C) contacts between the protons of two water and two CH(2)Cl(2) molecules and the C(alpha)[triple bond, length as m-dash]C(beta) of mutually cis alkynyl groups. In this complex the presence of additional O-HH-C(Cp) and C-ClH-C(Cp) contacts gives rise to an extended bidimensional network. The optical and electrochemical properties of all derivatives have been examined. It is remarkable that for complexes and a facile oxidatively induced coupling, giving rise to 1,4-diferrocenylbutadiyne, is observed, this also having been proven by chemical oxidation.  相似文献   

8.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

9.
Li Z  Beatty AM  Fehlner TP 《Inorganic chemistry》2003,42(18):5707-5714
Utilization of binary information encoded in the charge configuration of quantum-dot cells (the quantum-dot cellular automata, QCA, paradigm) requires molecule-sized dots for room temperature operation. Molecular QCA cells are mixed-valence complexes, and the evaluation and functionalization of an unsymmetrical heterobinuclear, two-dot, Fe-Ru molecular QCA cell is described. The solid state structures of trans-RuCl(dppm)(2)(C[triple bond]CFc) (1) (dppm = methylbis(diphenylphosphane), Fc = (eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) and mixed-valence [trans-RuCl(dppm)(2)(C[triple bond]CFc)][BF(4)] (1a) as well as XPS and spectroscopic data suggest class II behavior suitable for the intended application. Utilization of the trans-Cl position of 1 permits functionalization for surface binding. Two "tailed" complexes of 1, trans-Ru(dppm)(2)(C[triple bond]CFc)(C[triple bond]CPhOCH(3)) (2) and trans-[Ru(dppm)(2)(C[triple bond]CFc)(N[triple bond]CCH(2)CH(2)NH(2))][PF(6)] (3), have been prepared and characterized. The solid state structure of 3 and multinuclear NMR experiments define the structures. In addition, the spectroscopic properties of all complexes and their mixed-valence species are used to define the effect of the substituent "tail" on mixed-valence properties. Further, the electrochemistry of these compounds permits assessment of the extent of perturbation of the substituents on the comproportionation constants and overall electrochemical stability. The complexes possess properties necessary for candidate QCA molecules.  相似文献   

10.
The addition reactions of the 16e half-sandwich complexes [M(eta5-Cp*)[E2C2(B10H10)]] (Cp*=pentamethylcyclopentadienyl: 1S: E=S, M=Rh; 2S: E=S; M=Ir; 2Se: E=Se, M=Ir) and [M(eta6-p-cymene)[S2C2(B10H10)]] (p-cymene=4-isopropyltoluene; 3S: M=Ru; 4S: M=Os), with acetylene, propyne, and 3-methoxypropyne lead to the 18e complexes 5-19 with a metal-boron bond in each case. The reactions start with an insertion of the alkyne into one of the metal-chalcogen bonds, followed by B-H activation, transfer of one hydrogen atom from the carborane via the metal to the terminal carbon of the alkyne, and concomitant ortho-metalation of the carborane. The E-eta2-CC and the C(1)B units are arranged either cisoid or transoid at the metal. X-ray structural analyses are reported for one of the starting 16e complexes (4S), the cisoid complex 12S (from 2S and HC[triple bond]C-CH3), and the transoid complexes 9S and 14S (from 1S and HC[triple bond]C-CH2OMe, and from 3S and HC[triple bond]CH, respectively). All new complexes 5-19 were characterized by NMR spectroscopy (1H, 11B, 13C, and 77Se and 103Rh NMR spectroscopy when appropriate).  相似文献   

11.
Reaction of the ruthenium half sandwich compound RuCl(eta(5)-C(5)H(5))(PPh(3))(2) with the uracil (Ur) substituted alkyne HC[triple bond, length as m-dash]CUr in the presence of halide scavengers NH(4)X (X = PF(6), BF(4), OTf) results in the formation of the vinylidene complexes [Ru([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)(eta(5)-C(5)H(5))(PPh(3))(2)][X] which crystallize in the hexagonal space group P6(3)/m. The hexagonal symmetry inherent to the system is due to the formation of a hydrogen bonded array mediated by the two sets of donor-acceptor units on the uracil, resulting in the formation of a cyclic "rosette" containing six ruthenium cations. In solution the (1)H and (31)P{(1)H} NMR spectra of the vinylidene complexes are both concentration and temperature dependent, in accord with the presence of monomer-dimer equilibria in which the rate of rotation of the vinylidene group is fast on the NMR timescale in the monomeric species, but slow in the dimers. The isoelectronic molybdenum-containing vinylidene complex [Mo(eta(7)-C(7)H(7))(dppe)([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)][BF(4)] (dppe = 1,2-bis(diphenylphosphino)ethane) has also been prepared, but forms symmetric dimers in the solid state.  相似文献   

12.
The first examples of insertion of a C(triple bond)C bond of an alkyne into a C(carbene)-Calpha single bond of a carbene complex (C-Calpha insertion) are reported. (prim-Alkyl)carbene complexes [(OC)(5)M=C(OEt)CH(2)R] (1 a-f; M=Cr, W; R=nPr, C(7)H(7), Ph) undergo C-Calpha insertion of electron-deficient alkynes [PhC(triple bond)CC(XEt)NMe(2)]BF(4) (5 a,b; X=O, S) to give zwitterionic carbiminium carbonylmetalates 3 a-g, which are thermally transformed into (CO)(4)M chelate carbene complexes 4 a-g by elimination of CO. The overall reaction is highly regio- and stereoselective. It involves an unprecedented metalla(di-pi-methane) rearrangement as the key step.  相似文献   

13.
Wei QH  Yin GQ  Zhang LY  Chen ZN 《Inorganic chemistry》2006,45(25):10371-10377
Heteroheptanuclear ReM6 (M = Cu 2, Ag 3) complexes of 5,5-diethynyl-2,2'-bipyridine were prepared by the reaction of [M2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane) with the precursor compound Re(Me3SiC[triple bond]CbpyC[triple bond]CSiMe3)(CO)3Cl in the presence of potassium fluoride by fluoride-catalyzed desilylation. When [Cu2(mu-dppm)2(MeCN)2]2+ reacts directly with Me3SiC[triple bond]CbpyC[triple bond]CSiMe3, a binuclear CuI complex [Cu2(mu-dppm)2(SiMe3C[triple bond]CbpyC[triple bond]CSiMe3)2]2+ (4) was isolated. Further addition of [Cu2(mu-dppm)2(MeCN)2]2+ into a THF-MeOH (3:1, v/v) solution of 4 in the presence of potassium fluoride induced isolation of a tetradecanuclear CuI14 complex [Cu14(mu-dppm)14(C[triple bond]CbpyC[triple bond]C)2]10+, which is composed of a binuclear Cu2(mu-dppm)2 and four triangular trinuclear Cu3 units. Both heteroheptanuclear ReIMI6 and tetradecanuclear CuI14 complexes display luminescence in both solid states and dichloromethane solutions at room temperature with emissive lifetimes in the range of microseconds. The dual emissive feature for the ReM6 and CuI14 complexes is ascribed tentatively to originate from both MLCT [d(Re/Cu) -->pi* (bpy)] and LMCT (acetylide --> M3) transitions. .  相似文献   

14.
Peng HM  Song G  Li Y  Li X 《Inorganic chemistry》2008,47(18):8031-8043
A new type of quinoline-functionalized palladium N-heterocyclic carbene (NHC) complexes has been synthesized via silver transmetallation. The quinoline moiety was either directly attached to the imidazole ring or linked to it by a methylene group. NHCs with a methylene linker tend to form trans biscarbene complexes in the reaction of Pd(COD)Cl2, while NHCs without any linker form chelating NHC-quinoline (NHC-N) complexes. These two types of carbenes also react with [Pd(allyl)Cl]2 to give monodentate NHC palladium eta(3)-allyl chlorides [Pd(NHC)(allyl)Cl]. Fluxionality in the NMR time scale was observed for most complexes, and the origin of their dynamic behaviors was discussed for each type of structure. For [Pd(NHC)(allyl)Cl] with a relatively small wing tip group of the NHC, the fluxionality (selective line-broadening of (1)H NMR signals) is caused by selective eta(3)-eta(1)-eta(3) allyl isomerization. For NHC with a bulkier (t)Bu group, a different line-broadening pattern was observed and was ascribed to partially hindered Pd-C(carbene) bond rotation. For cationic chelating complexes [Pd(NHC-N)(allyl)]BF4, the dynamic exchange process likely originates from a dissociative boat-to-boat inversion of 7-membered palladacycles. Activation parameters were measured for this process. Crystal structures were reported for representative complexes in each category.  相似文献   

15.
A diverse array of unsaturated C1 (methylene and methylidyne) and C2 (vinyl, vinylidene, ethylidene, and ethylidyne) bound to metal center(s) and surfaces has received much attention. In sharp contrast to the effort devoted to C1 and C2 ligands, complexes or surfaces bearing C3 fragments have been less explored, especially the M-C3H3 systems, which include propargyl (M-CH2C[triple bond]CH), allenyl (M-CH=C=CH2), and acetylide (M-C[triple bond]CCH3) forms. To understand the bonding and reactivity of these C3 species appended to an extended metal structure, proprargyl bromide (Br-CH2C[triple bond]CH) was utilized as a precursor to generate C3H3 fragments on a Ag(111) surface under ultrahigh vacuum conditions. The molecular transformation process was explored by a combination of temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and X-ray photoemission spectroscopy (XPS) techniques. In addition, density functional theory (DFT) calculations were conducted to obtain the optimized geometries and energies for the various surface intermediates. The computed IR spectra facilitated the vibrational mode assignments. TPD spectra show that C3H3(ad) self-hydrogenates to C3H4 around 300 and 475 K, respectively. In addition to hydrogenation, a C-C coupling product C6H6 (2,4-hexadiyne) is also unveiled as part of the desorption feature at 475 K. Identification of the possible C3H4 isomers (propyne and/or allene) was equivocal, but it was circumvented by using an alpha,alpha-dimethyl-substituted propargylic species--(CH3)2(alpha)C-C[triple bond]CH, which results in hydrogenation products, alkynic (CH3)2CH-C[triple bond]CH and allenic (CH3)2C=C=CH2, distinguishable by the mass spectrometry. The substitution experiments clarify that in the normal case the convoluted TPD feature around 300 K, in fact, consists of both allene at 260 K and propyne at 310 K, while the last hydrogenation product at 475 K is solely propyne. The RAIR spectroscopy demonstrates that at 200 K C3H3(ad) on Ag(111) readily adopts the allenyl formalism involving concerted CBr bond scission and [1,3]-sigmatropic migration (i.e., Br-*CH2C[triple bond]CH --> *CH2=C=CH-Ag), in which the sigma bond moves to a new metal location across the pi-periphery. Single hydrogen incorporation to the alpha-carbon of the surface allenyl rationalizes the allene formation at 260 K. When the surface is heated to the range of 250-300 K, both RAIR and XP spectra reveal drastic changes, indicative of a new species whose spectral characteristics could be duplicated by separate measurements from 1-propyn-1-yl iodide (CH3-C[triple bond]C-I) being a direct source for the surface methylacetylide (CH3-C[triple bond]C-Ag). It is thus suggested that allenyl is further reorganized to render acetylide presumably via [1,3]-hydrogen shift (i.e., *CH2=C=CH-Ag --> *CH3=C[triple bond]C-Ag). The presence of this third Ag-C3H3 isomeric form demonstrates an unprecedented propargyl-allenyl-acetylide multiple rearrangements on a metal surface. Migration of the triple bond from the remote terminal position into the chain, through the stage of allenic structure, is driven by thermodynamic stabilities, supported by the DFT total energy calculations. Consequently, the evolutions of propyne at 310 and 475 K, as well as 2,4-hexadiyne (bismethylacetylide), can all be reasoned out.  相似文献   

16.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

17.
In this account [3]- and [5]cumulene complexes of group 4 metallocenes that form five-membered metallacycles are described. These complexes have a “triple bond” despite their five-membered ring structure, showing that they are regarded as 1-metallacyclopent-3-ynes. The molecular structures show their strained alkyne character. These complexes react with transition metals to form alkyne-coordinated bimetallic complexes. They also receive electrophilic attack by protons and boranes resulting in M–C bond cleavage. When a [3]cumulene couples with an alkyne on the metal, the reaction produces seven-membered metallacycloalkynes that have a strained structure showing an interaction between the “triple bond” and the metal center. Hexapentaenes, [5]cumulenes, form conjugated 1-metallacyclopent-3-ynes. The aryl-substituted [5]cumulene complex was reduced by alkali metal to give dianionic species that reacted with protons to give 1-metallacyclopent-3-ene, a cycloalkene, and with iodomethane to give 1-metallacyclopenta-2,3-diene, a cycloallene. The hexapentaene with tert-butyl groups reacts with zirconocene to form an η2-π-coordinated complex in the presence of trimethylphosphine, although it gave a 1-metallacyclopent-3-yne in the absence of the phosphine. The former was transformed into the latter by addition of a phosphine, and vice versa by removing the phosphine, showing a “haptotropic” shift.  相似文献   

18.
The mechanism of reversible alkyne coupling at zirconium was investigated by examination of the kinetics of zirconacyclopentadiene cleavage to produce free alkynes. The zirconacyclopentadiene rings studied possess trimethylsilyl substituents in the alpha-positions, and the ancillary Cp2, Me2C(eta(5)-C5H4)2, and CpCp* (Cp* = eta(5)-C5Me5) bis(cyclopentadienyl) ligand sets were employed. Fragmentation of the zirconacyclopentadiene ring in Cp2Zr[2,5-(Me3Si)2-3,4-Ph2C4] with PMe3, to produce Cp2Zr(eta(2)-PhC[triple bond]CSiMe3)(PMe3) and free PhC[triple bond]CSiMe3, is first-order in initial zirconacycle concentration and zero-order in incoming phosphine (k(obs) = 1.4(2) x 10(-5) s(-1) at 22 degrees C), and the activation parameters determined by an Eyring analysis (DeltaH(double dagger) = 28(2) kcal mol(-1) and DeltaS(double dagger) = 14(4) eu) are consistent with a dissociative mechanism. The analogous reaction of the ansa-bridged complex Me2C(eta(5)-C5H4)2Zr[2,5-(Me3Si)2-3,4-Ph2C4] is 100 times faster than that for the corresponding Cp2 complex, while the corresponding CpCp* complex reacts 20 times slower than the Cp2 derivative. These rates appear to be largely influenced by the steric properties of the ancillary ligands.  相似文献   

19.
Understanding the interaction of chiral ligands, alkynes, and alkenes with cobaltcarbonyl sources is critical to learning more about the mechanism of the catalytic, asymmetric Pauson-Khand reaction. We have successfully characterized complexes of the type [Co2(alkyne)(binap)(CO)4] (BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine)) and shown that diastereomer interconversion occurs under Pauson-Khand reaction conditions when alkyne=HC[triple bond]CCO2Me. Attempts to isolate [Co2(alkyne)(binap)(CO)x] complexes with coordinated alkenes led to the formation of cobaltacyclopentadiene species.  相似文献   

20.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号