首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the spin-lattice relaxation time, NMR absorption line and magnetization have been carried out on the Tl3H(SO4)2 crystal below 50 K. The anomaly at around 7 K was: (1) the spin-lattice relaxation times of 1H and 205Tl nuclei increase steeply with decreasing temperature below 7 K, (2) the NMR absorption lines below 7 K shift to the high-magnetic field side in comparison with that above 7 K, and (3) the 1H NMR line width exhibits a drastic increase of the line width with decreasing temperature below 7 K. These results indicate that the magnetic dipole fluctuation of the proton changes at 7 K. On the other hand, there are no remarkable anomalies of magnetic susceptibility at around 7 K. From these results it is deduced that the anomaly at around 7 K is caused by the change in quantum mechanical process of the proton from proton tunneling to zero-point vibration of hydrogen in the hydrogen bond with the decrease of temperature.  相似文献   

2.
Pulsed NMR technique is used to study the 195Pt nuclear spin relaxation in KCP (Cl) in the temperature range 44 ? T ? 112 K where solitary waves are expected to be the main excitations of this quasi one-dimensional system.A theoretical explanation of the strongly non-exponential magnetization recovery is presented based on hopping of solitons in connection with NMR relaxation.  相似文献   

3.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

4.
Investigation of spin lattice relaxation time T1 and NMR line shift of Pt195 in KCP under hydrostatic pressure are reported in the temperature range between 78 and 300 K up to 20 kbar. At temperature above 120 K, pressure decreases the relaxation rate appreciably.  相似文献   

5.
1H nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) techniques were employed to study the perovskite-type layered structure compound (C18H37NH3)2MnCl4 undergoing structural phase transitions. The spin relaxation was found to sensitively reflect the two-dimensional electron spin diffusion.  相似文献   

6.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

7.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

8.
The mixed compound (CH3NH3)2Cu(Cl0.1Br0.9)4 which has random bonds of ferromagnetic and antiferromagnetic interactions has been investigated by the pulsed NMR of 1H, 63,65Cu and 79,81Br. The temperature dependence of the line width of 1H showed the existence of the magnetic phase transition at 15 K in the applied field of 4 kOe. The moments of Cu2+ have been shown to lie within the c-plane and have some randomness from the field dependence of the NMR spectrum and the spin-echo decay time of the copper and the bromine nuclei.  相似文献   

9.
The improper ferroelastic phase letovicite (NH4)3H(SO4)2 has been studied by 1H MAS NMR as well as by static 14N NMR experiments in the temperature range of 296–425 K. The 1H MAS NMR resonance from ammonium protons can be well distinguished from that of acidic protons. A third resonance appears just below the phase transition temperature which is due to the acidic protons in the paraelastic phase. The lowering of the second moment M2 for the ammonium protons takes place in the same temperature range as the formation of domain boundaries, while the signals of the acidic protons suffer a line narrowing in the area of Tc. The static 14N NMR spectra confirm the temperature of the motional changes of the ammonium tetrahedra. Two-dimensional 1H NOESY spectra indicate a chemical exchange between ammonium protons and the acidic protons of the paraphase.  相似文献   

10.
The 139La NMR spectra and spin–spin relaxation times have been measured for the 16O and 18O isotope-substituted manganite (La0.25Pr0.75)0.7Ca0.3MnO3 in the external magnetic field of 5 T. The NMR signal wipe-out has been observed in the 18O-enriched sample in the charge-ordered state. This phenomenon is connected with a sharp increase in the spin–spin relaxation rate. The great isotope-effect observed provides a clear evidence of an essential role of oxygen motion in controlling the long-range magnetic order in manganites.  相似文献   

11.
The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5 K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.  相似文献   

12.
The molecular susceptibility and paramagnetic shift of [N(CH3)4]2CoCl4 single crystals were measured, and from these experimental results we obtained the transferred hyperfine interaction, Hhf, due to the transfer of spin density from Co2+ ions to [N(CH3)4]+ ions. The transferred hyperfine interaction can be expressed as a linear equation, with Hhf increasing with increasing temperature. The remarkable change in Hhf near Tc5 (=192 K) corresponds to a phase transition. The proton spin-lattice relaxation times of [N(CH3)4]2CoCl4 single crystals were also investigated, and it was found that the relaxation process can be described by a single exponential function. The variation of the relaxation time with temperature undergoes a remarkable change near Tc5, confirming the presence of a phase transition at that temperature. From the above results, we conclude that the increase in Hhf with increasing temperature is large enough to allow the transfer of spin density between Co2+ ions and the nuclear spins of the nonmagnetic [N(CH3)4]+ ions in the lattice, and thus the increase in the relaxation time with temperature is attributed to an increase in the transferred hyperfine field.  相似文献   

13.
The relaxation times of the 1H and 133Cs nuclei in CsH3(SeO3)2 crystals were investigated using FT NMR. The 133Cs spectrum does change from seven resonance lines to one resonance line near Tm (=350 K). The presence of only one 133Cs signal is due to the liquid state resulting from the melting of the crystal. The variation in the separation of the 133Cs resonance lines with temperature indicates that the EFG at the Cs sites produced by the (SeO3)2− groups varies with temperature, which in turn means that the atoms neighboring 133Cs are displaced. And, the T1 for 133Cs is very long and undergoes significant changes near Tm. The change in the temperature dependence of T1 at Tm for the 133Cs nuclei coincides with the melting temperature. These results are compared with those obtained for MH3(SeO3)2 (M=Na, K, and Cs) crystals.  相似文献   

14.
The proton spin-lattice relaxation rates in [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals grown using the slow evaporation method were investigated over the temperature range 120-400 K. It was found that the relaxation processes of 1H for all the [N(CH3)4]2BCl4 crystals can be described with single exponential functions. The changes in the 1H relaxation behavior in the neighborhood of the phase transition temperatures are used to detect changes in the state of internal motion. From the 1H spin-lattice relaxation rate measurements for [N(CH3)4]2BCl4 crystals, the activation energies were calculated for each phase. The large values of the activation energies indicate that the N(CH3)4 groups are significantly affected during the transitions. Although these [N(CH3)4]2BCl4 crystals all belong to the group of A2BX4-type crystals, their 1H spin-lattice relaxation rates have different temperature dependences and indicate the occurrence of different molecular motions within the crystals. We additionally show for the first time that the differences in 1H spin-lattice relaxation rates among the [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals arise from differences in the electron structures of the metal ions within the series.  相似文献   

15.
Erbium and ytterbium codoped double tungstates NaY(WO4)2 crystals were prepared by using Czochralski (CZ) pulling method. The absorption spectra in the region 290-2000 nm have been recorded at room temperature. The Judd-Ofelt theory was applied to the measured values of absorption line strengths to evaluate the spontaneous emission probabilities and stimulated emission cross sections of Er3+ ions in NaY(WO4)2 crystals. Intensive green and red lights were measured when the sample were pumped by a 974 nm laser diode (LD), especially, the intensities of green upconversion luminescence are very strong. The mechanism of energy transfer from Yb3+ to Er3+ ions was analyzed. Energy transfer and nonradiative relaxation played an important role in the upconversion process. Photoexcited luminescence experiments are also fulfilled to help analyzing the transit processes of the energy levels.  相似文献   

16.
用液氮骤冷方法制备了(AgI)x(Ag4P2O7)1-x系列非晶态快离子导体。对AgI摩尔浓度x=0.50,0.60,0.67,0.75,0.80的样品,在77—300K温度范围及2,5,10,15MHz的频率上测量了纵波和横波的超声衰减和声速。发现在200—240K附近存在一个异常强的弛豫型超声吸收峰,随AgI含量的增加,该峰的位置向低温方向移动,且峰的高度增大。在实验的温度范围内,观察到纵波和 关键词:  相似文献   

17.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

18.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

19.
The 14N chemical shift and quadrupole coupling constant in TMMC has been determined as a function of temperature from NMR measurements. The results are discussed in terms of the crystal structure and of the phase transition.  相似文献   

20.
The spin-lattice relaxation rates for 1H and 39K nuclei in K3H(SO4)2 and KHSO4 single crystals, which are potential candidate materials for use in fuel cells, were determined as a function of temperature. The spin-lattice relaxation recovery of 1H can be represented for both crystals with a single exponential function, but cannot be represented by the Bloembergen-Purcell-Pound (BPP) function, so is not related to HSO4 motion. The recovery traces of 39K, which predominantly undergoes quadrupole relaxation, can be represented by a linear combination of two exponential functions. The temperature dependences of the relaxation rates for 39K can be described with a simple power law T1−1=αT2. The spin-lattice relaxation rates for the 39K nucleus in K3H(SO4)2 and KHSO4 crystals are in accordance with a Raman process dominated by a phonon mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号