首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A synthesis of the pentenyl glycoside of the tetrasaccharide side chain from the major glycoprotein of Bacillus anthracis by a [3 + 1] approach is described. The construction of the 1,2-trans-glycosidic linkage in the terminal anthrose moiety was achieved through the application of known alpha-nitrilium ion-mediated beta-selective glycosylation methodology. An iterative glycosylation strategy was used for the assembly of the trirhamnan building block. A new route to the anthrose saccharide was developed from D-galactose.  相似文献   

2.
Anthrose is the upstream terminal unit of the tetrasaccharide side chain from a major glycoprotein of Bacillus anthracis exosporium and is part of important antigenic determinants. A novel entry to anthrose-containing antigens and precursors is described. The synthetic route, starting from D(+)-fucose, makes use of intermediates featuring a cyclic sulfite or sulfate function which serves successively as a protecting and a leaving group.  相似文献   

3.
Abstract Our goal was to ultimately predict the sensitivity of untested bacteria (including those of biodefense interest) to ultraviolet (UV) radiation. In this study, we present an overview and analysis of the relevant 254 nm data previously reported and available in the literature. The amount of variability in this data prevented us from determining an "average" response for any bacterium. Therefore, we developed particular selection criteria to include the data in our analysis and suggested future guidelines for reporting UV sensitivity results. We then compiled a table of the sensitivity to 254 nm UV for 38 bacteria and three bacterial spores. The UV sensitivity was quite similar (within 10%) among the spores of Bacillus anthracis (strains Vollum 1B and Sterne), Bacillus subtilis, and Bacillus megaterium. These data indicate that spores of B. subtilis and B. megaterium could be adequate simulants of B. anthracis spores in UVC experiments. Spores of B. anthracis, B. subtilis and B. megaterium were 5-10 times more resistant to UV than were their corresponding vegetative cells. The vegetative cells of B. anthracis showed similar UV sensitivity to those of Burkholderia pseudomallei, Shigella sonnei, and a wild-type strain of Escherichia coli. Yersinia enterocolitica and Vibrio cholerae appeared more sensitive to UV and Salmonella typhi slightly more resistant to UV than E. coli. The sensitivity (at 254 nm) of all vegetative bacteria ranged from 11 to 80 Jm(2) for a 1 Log(10) kill and from 25-200 Jm(2) for 4 Log(10) kill.  相似文献   

4.
A simple membrane strip-based biosensor for the detection of viable B. anthracis spores was developed and combined with a spore germination procedure as well as a nucleic acid amplification reaction to identify as little as one viable B. anthracis spore in less than 12 h. The biosensor is based on identification of a unique mRNA sequence from the anthrax toxin activator (atxA) gene encoded on the toxin plasmid, pXO1. Preliminary work relied on plasmid vectors in both E. coli and B. thuringiensis expressing the atxA gene. Once the principle was firmly established, the vaccine strain of B. anthracis was used. After inducing germination and outgrowth of spores of B. anthracis (Sterne strain), RNA was extracted from lysed cells, amplified using nucleic acid sequence-based amplification (NASBA), and rapidly identified by the biosensor. While the biosensor assay requires only 15-min assay time, the overall process takes 12 h for the detection of as little as one viable B. anthracis spore, and is shortened significantly, if larger amounts of spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized oligonucleotide probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second oligonucleotide probe that has been coupled to dye-encapsulating liposomes. The dye in the liposomes then provides a signal that can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1.5 fmol of target mRNA. Specificity analysis revealed no crossreactivity with closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis etc.  相似文献   

5.
Herein we describe studies that indicate a cationic conjugated polyelectrolyte shows biocidal activity against gram-negative bacteria (Escherichia coli, E. coli, BL21, with plasmids for Azurin and ampicillin resistance) and gram-positive bacterial spores (Bacillus anthracis, Sterne, B. anthracis, Sterne). These studies were carried out with aqueous suspensions of the conjugated polyelectrolyte, with the polyelectrolyte in supported formats and with samples in which the conjugated polyelectrolyte was coated on the bacteria. The results are interesting in that the biocidal activity is light-induced and appears effective due to the ability of the conjugated polyelectrolyte to form a surface coating on both types of bacteria. The effects observed here should be general and suggest that a range of conjugated polyelectrolytes in different formulations may provide a useful new class of biocides for both dark and light-activated applications.  相似文献   

6.
A convergent strategy for the synthesis of beta-cyclodextrin analogues is reported, utilizing preferential cyclodimerization of an azido-alkyne trisaccharide via Cu(I)-catalyzed [3 + 2] dipolar cycloaddition of the alkyne and azide functional groups. The resultant oligosaccharide macrocycle retains the binding propensity of cyclodextrins, as demonstrated by the similar ANS association constants measured for macrocycle 1 and beta-cyclodextrin. This new synthetic strategy opens up new avenues for modular preparation of functionally diverse cyclodextrin analogues that are otherwise inaccessible.  相似文献   

7.
The surfaces of Bacillus anthracis endospores expose anthrose-containing oligosaccharides, which have been considered for use as a target for specific detection of the spores. In this direction, we have developed an efficient and straightforward synthetic strategy toward anthrose lipidic derivate tetradecyl 4,6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-β-d-glucopyranoside 16 as a model target for B. anthracis spores. The ability of the prepared anthrose and glucose (for control purposes) lipidic derivatives to display on a multiwell plate was demonstrated by a colorimetric phenol-sulfuric acid assay and their potential utility in multiwell binding assays was assessed using fluorescein-labeled concanavalin A (ConA-FITC) and Aleuria aurantia (AAL-FITC).  相似文献   

8.
Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied for the characterization of Bacillus anthracis spore biomarkers. B. anthracis spores were extracted under a simple procedure, followed by linear mode analysis, using sinapinic acid as the matrix. Several markers with a mass range of 4-7 kDa were detected in three B. anthracis strains: Vollum, Sterne and V770-NP1-R. Similar spectra were also obtained for spore extracts of two members of the B. cereus group: B. thuringiensis and B. cereus, but not for B. mycoides, B. subtilis or B. licheniformis, suggesting that these markers are specific to closely related members of the B. cereus group. When alpha-cyano-4-hydroxycinnamic acid was used as the matrix, at least four additional new markers within a mass range of 2-4 kDa could be detected in all B. anthracis spore extracts. These markers, corresponding to a molecular weight of 2528.3, 2792.4, 3077.4, and 3590.7 Da, have not been observed in extracts of the three closely related Bacillus species - B. cereus, B. thuringiensis and B. mycoides. These unique B. anthracis biomarkers, which were isotopically resolved and reproducibly detected in the highly accurate MALDI-TOFMS reflectron mode, may be useful as a basis for rapid and specific identification of B. anthracis strains.  相似文献   

9.
The draft ASTM Standard, "Standard Practice for Bulk Sample Collection and Swab Sample Collection of Visible Powders Suspected of Being Biological Agents from Nonporous Surfaces," was validated in a collaborative study consisting of 6 teams comprised of Civil Support personnel and First Responders, 2 levels of Bacillus anthracis Sterne and Bacillus thuringiensis Kurstaki spores, and 7 nonporous surfaces. The sample collection standard includes collection of the bulk sample (Method A) using a dry swab to push the sample onto a collection card and collection of residual sample (Method B) using an onsite test kit followed by a wet swab intended for additional onsite testing. Method A is to be performed prior to Method B in order to preserve unadulterated sample as potential criminal evidence. While statistical differences were observed between surfaces, between teams, and the interaction of surfaces and teams for the various sample types collected, these differences are due to the very low variability of the data and a much more narrow distribution than an ideal normal distribution, rather than to any practical differences. The data demonstrate that from both the 1.0 and 0.01 g powder samples, high levels of spores (mean >10(6) CFU) are recovered from the 7 surfaces by both the dry swab used in bulk sample collection (Method A) and the wet swab (Method B) sampling of the residual powder after bulk sample collection. Thus, after bulk sample collection, there is a high level of residual spores remaining for onsite biological testing and both Methods A and B should be performed in the field.  相似文献   

10.
The biosynthesis of the 3,4-dihydroxybenzoate moieties of the siderophore petrobactin, produced by B. anthracis str. Sterne, was probed by isotopic feeding experiments in iron-deficient media with a mixture of unlabeled and D-[(13)C6]glucose at a ratio of 5:1 (w/w). After isolation of the labeled siderophore, analysis of the isotopomers was conducted via one-dimensional (1)H and (13)C NMR spectroscopy, as well as (13)C-(13)C DQFCOSY spectroscopy. Isotopic enrichment and (13)C-(13)C coupling constants in the aromatic ring of the isolated siderophore suggested the predominant route for the construction of the carbon backbone of 3,4-DHB (1) involved phosphoenol pyruvate and erythrose-4-phosphate as ultimate precursors. This observation is consistent with that expected if the shikimate pathway is involved in the biosynthesis of these moieties. Enrichment attributable to phosphoenol pyruvate precursors was observed at C1 and C6 of the aromatic ring, as well as into the carboxylate group, while scrambling of the label into C2 was not. This pattern suggests 1 was biosynthesized from early intermediates of the shikimate pathway and not through later shikimate intermediates or aromatic amino acid precursors.  相似文献   

11.
Stereocontrolled syntheses of biotin-labeled oligosaccharide portions containing the carbohydrate moiety of glycoprotein from Echinococcus granulosus have been accomplished. Trisaccharide Galβ1-3Galβ1-3GalNAcα1-R (A), tetrasaccharide Galα1-4Galβ1-3Galβ1-3GalNAcα1-R (B), and pentasaccharide Galα1-4Galβ1-3Galβ1-3Galβ1-3GalNAcα1-R (C), (R = biotinylated probe) were synthesized by stepwise condensation and/or block synthesis by the use of 5-(methoxycarbonyl)pentyl 2-azido-4,6-O-benzylidene-2-deoxy-α-d-galactopyranoside as a common glycosyl acceptor. The synthesis of the tetrasaccharide and the pentasaccharide was improved from the viewpoint of reducing the number of synthetic steps and increasing the total yield by changing from stepwise condensation to block synthesis. Moreover, hexasaccharide E, which contains the oligosaccharide sequence which occurs in E. granulosus, was synthesized from trisaccharide D. We examined the antigenicity of these five oligosaccharides by an enzyme-linked immunosorbent assay (ELISA). Although compounds of C–E did not exhibit antigenicity against cystic echinococcosis (CE) patient sera, compounds B, D, and E showed good serodiagnostic potential for alveolar echinococcosis (AE).  相似文献   

12.
Specific identification of Bacillus anthracis (B. anthracis) is vital for the accurate treatment of afflicted personnel during biological warfare situations and civilian terrorist attacks. In order to accomplish this, we have subjected the lysates from B. anthracis to affinity purification using monoclonal antibodies for the selected antigenic protein present in the bacteria. The bound antigenic protein was identified by multi-dimensional protein identification technology (MudPIT) to be a surface layer protein EA1. The same antigen was identified from the lysates from a few strains of B. anthracis demonstrating the observation to be common for B. anthracis strains. Hence, this presents an effective pathway for the identification of the bacteria present in unknown samples of various origins. Generation of a database containing the EA1 protein has been found to be useful in the database search of unknown samples.  相似文献   

13.
Arylation of α-methyleneglutaronitrile (MGN) occurred when arylamines, aminopyridines and 3-aminothiophene were treated with alkylnitrites and copper(I) chloride in dimethyl methylphosphonate (DMMP) solutions. Results from this study exemplified the synthetic advantage of DMMP as a solvent in Meerwein reactions with an olefin of low reactivity, yielding 1-aryl-2 chloro-2,4-dicyanobutanes, and its 3-pyridyl- and thiophen-3-yl analogues. Partial hydrolysis, followed by subsequent ring closure of the substituted 2,4-dicyanobutanes to 2,6-piperidinediones (glutaric acid imides) was effected with a solution of sulfuric acid in acetic acid. The aromatization of the substituted 2,6-piperidinediones with phosphorus oxychloride in the presence of hexamethylphosphoric acid triamide (HMPT) yielded the 2,6-dichloropyridine moiety substituted at the carbon atom C-3.  相似文献   

14.
An efficient strategy for the synthesis of 5-hydroxy substituted isofagomine analogues and , having both -CH2OH/CH3 and -OH functionality at the C-5 position, and evaluation of their inhibitory potency is reported. The synthetic methodology involves the aldol-Cannizzaro reaction of easily available alpha-d-xylopentodialdose followed by hydrogenolysis to afford the triol . Selective amidation of the alpha- and beta-hydroxymethyl group at C-4, deprotection of the 1,2-acetonide group and hydrogenation gave the target molecules, which were found to be potent against beta-glycosidases with IC50 values in the micro molar range. Compound showed excellent potency against glycosidases and human salivary amylase.  相似文献   

15.
[Reaction: see text]. The total synthesis of the natural product Bengamide E, one of the members of a new class of antitumor natural products of marine origin, is reported based on a convergent and flexible synthetic route featuring an oxirane ring-opening reaction and an olefin cross metathesis. In a similar way, analogues structurally modified at C-2 and at the terminal vinyl positions were prepared by introduction of various nucleophiles and alkyl substituents during the epoxide opening and the olefin cross metathesis steps, respectively. These studies demonstrate the validity of our synthetic strategy, although they reveal some problems associated with the olefin cross metathesis, whose efficiency depends on the substituent at the C-2 position as well as the steric environment of the alkene.  相似文献   

16.
The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one‐pot glycosylation and polymer‐assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAcα(1,3)GalNAcβ(1,3)Galα(1,4)Galβ(1,4)Glc, was recently identified as a ligand of the lectin SLL‐2 isolated from an octocoral Sinularia lochmodes. The chemo‐ and α‐selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf2O, TTBP and Ph2SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one‐pot procedure. The pentasaccharide was prepared by the α‐selective glycosylation of the N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) thioglycoside with a 2‐azide‐1‐hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a one‐pot process. We next applied the one‐pot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Galα(1,3)GalNAc and Galα(1,3)Gal derivatives were successfully prepared by the established method. An assay of the binding of the synthetic oligosaccharides to a fluorescent‐labeled SLL‐2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL‐2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL‐2, was comparable to their binding affinity to SLL‐2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.  相似文献   

17.
In this paper, we present a new impedance-based method to detect viable spores by electrically detecting their germination in real time within microfluidic biochips. We used Bacillus anthracis Sterne spores as the model organism. During germination, the spores release polar and ionic chemicals, such as dipicolinic acid (DPA), calcium ions, phosphate ions, and amino acids, which correspondingly increase the electrical conductivity of the medium in which the spores are suspended. We first present macro-scale measurements demonstrating that the germination of spores can be electrically detected at a concentration of 10(9) spores ml(-1) in sample volumes of 5 ml, by monitoring changes in the solution conductivity. Germination was induced by introducing an optimized germinant solution consisting of 10 mM L-alanine and 2 mM inosine. We then translated these results to a micro-fluidic biochip, which was a three-layer device: one layer of polydimethylsiloxane (PDMS) with valves, a second layer of PDMS with micro-fluidic channels and chambers, and the third layer with metal electrodes deposited on a pyrex substrate. Dielectrophoresis (DEP) was used to trap and concentrate the spores at the electrodes with greater than 90% efficiency, at a solution flow rate of 0.2 microl min(-1) with concentration factors between 107-109 spores ml(-1), from sample volumes of 1-5 microl. The spores were captured by DEP in deionized water within 1 min (total volume used ranged from 0.02 microl to 0.2 microl), and then germinant solution was introduced to the flow stream. The detection sensitivity was demonstrated to be as low as about a hundred spores in 0.1 nl, which is equivalent to a macroscale detection limit of approximately 10(9) spores ml(-1). We believe that this is the first demonstration of this application in microfluidic and BioMEMS devices.  相似文献   

18.
The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy-α-d-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree of 3.  相似文献   

19.
[reaction: see text]. A trisaccharide donor containing a cis-Galpalpha(1-->4)Galp linkage was prepared using a synthetic strategy based on chemoenzymatic oligosaccharide synthesis on a soluble polymeric support. Significantly, only retaining glycosyltransferases gave complete reactions, whereas inverting enzymes showed little or no activity with poly(ethylene glycol) (MPEG)-bound lactose as an acceptor. The MPEG-attached trisaccharide was shown to bind to Verotoxin-1 by transfer NOE studies through the Galpalpha(1-->4)Galp portion of the molecule.  相似文献   

20.
Aslan K  Zhang Y  Hibbs S  Baillie L  Previte MJ  Geddes CD 《The Analyst》2007,132(11):1130-1138
We describe the ultra-fast and sensitive detection of the gene encoding the protective antigen of Bacillus anthracis the causative agent of anthrax. Our approach employs a highly novel platform technology, Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF), which combines the use of Metal-Enhanced Fluorescence to enhance assay sensitivity and focused microwave heating to spatially and kinetically accelerate DNA hybridization. Genomic and exosporium target DNA of Bacillus anthracis spores was detected within a minute in the nanograms per microliter concentration range using low-power focused microwave heating. The MAMEF technology was able to distinguish between B. anthracis and B. cereus, a non-virulent close relative. We believe that this study has set the stage and indeed provides an opportunity for the ultra-fast and specific detection of B. anthracis spores with minimal pre-processing steps using a relatively simple but cost-effective technology that could minimize casualties in the event of another anthrax attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号