首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
We consider the problem of how to cloak objects from antiplane elastic waves using two alternative techniques. The first is the use of a layered metamaterial in the spirit of the work of Torrent and Sanchez-Dehesa (2008) who considered acoustic cloaks, motivated by homogenization theories, whilst the second is the use of a hyperelastic cloak in the spirit of the work of Parnell et al. (2012). We extend the hyperelastic cloaking theory to the case of a Mooney–Rivlin material since this is often considered to be a more realistic constitutive model of rubber-like media than the neo-Hookean case studied by Parnell et al. (2012), certainly at the deformations required to produce a significant cloaking effect. Although not perfect, the Mooney–Rivlin material appears to be a reasonable hyperelastic cloak. This is clearly encouraging for applications. We quantify the effectiveness of the various cloaks considered by plotting the scattering cross section as a function of frequency, noting that this would be zero for a perfect cloak.  相似文献   

2.
A coordinate-transformation method can be used to design invisibility cloaks for many types of waves, including acoustic waves. The traditional method for designing a cloak depends on a transformation from a virtual space to a physical space. Previous acoustic cloaks that are mainly designed with linear-transformation-based acoustics have drawbacks that acoustic wave trajectories in the cloaks cannot be controlled and tuned. This work uses a nonlinear mapping from a ray trajectory perspective to construct acoustic cloaks with tunable non-singular material properties. Use of a ray trajectory equation is a straightforward and alternate way to study propagation characteristics of different types of waves, which allows more flexibility in controlling the waves. A broadband cylindrical cloak for acoustic waves in an inviscid fluid is realized with layered non-singular, homogeneous, and isotropic materials based on a nonlinear transformation. Some advantages and improvements of the invisibility nonlinear-transformation cloak over a traditional linear-transformation cloak are analyzed. The invisibility capability of the nonlinear-transformation cloak can be tuned by adjusting a design parameter that is shown to have influence on the acoustic wave energy flowing into the region inside the cloak. Numerical examples show that the nonlinear-transformation cloak is more effective for making a domain undetectable by acoustic waves in an inviscid fluid and shielding acoustic waves from outside the cloak than the linear-transformation cloak in a broad frequency range. The methodology developed here can be used to design nonlinear-transformation cloaks for other types of waves.  相似文献   

3.
Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. Discretely layered cloaks having constant material parameters within each layer are a viable alternative, but due to their discrete nature, may become ineffective outside of narrow frequency ranges. Because of such limitations, there is interest in finding discretely layered systems that can be effective in as wide as possible bandwidth without the need for unrealizable material properties within each layer. The present work introduces a novel methodology for finding optimal material parameters for use in such layered cloaks. In principle, the technique could be applied to any acoustic or electromagnetic scattering problem, but for purposes of demonstration, this paper considers a fluid-loaded acoustically hard sphere with a cloak that comprised layered pentamodes, whose material properties are constrained to lie within reasonable ranges relative to the density and bulk modulus of water.  相似文献   

4.
Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.  相似文献   

5.
Transformational elastodynamics can be used to protect sensitive structures from harmful waves and vibrations. By designing the material properties in a region around the sensitive structure, a cloak, the incident waves can be redirected as to cause minimal or no harmful response on the pertinent structure. In this paper, we consider such transformational cloaking built up by a suitably designed metamaterial exhibiting micropolar properties. First, a theoretically perfect cloak is obtained by designing the properties of an (unphysical) restricted micropolar material within the surrounding medium. Secondly, we investigate the performance of the cloak under more feasible design criteria, relating to finite elastic parameters. In particular, the behavior of a physically realizable cloak built up by unrestricted micropolar elastic media is investigated. Numerical studies are conducted for the case of buried as well as surface breaking structures in 2D subjected to incident Rayleigh waves pertinent to seismic loading. The studies show how the developed cloaking procedure can be utilized to substantially reduce the response of the structure. In particular, the results indicate the performance of the cloak in relation to constraints on the elastic parameters.  相似文献   

6.
Acoustic cloaking is an important application of acoustic metamaterials. This article proposes a novel design scheme for acoustic cloaking based on the region partitioning and multi-origin coordinate transformation. The cloaked region is partitioned into multiple narrow strips. For each strip, a local coordinate system is established with the local origin located at the strip center, and a coordinate transformation in the local coordinate system is conducted to squeeze the material along the strip length direction to form the cloaked region. To facilitate the implementation of the acoustic cloak, the multilayer effective medium is used to approximate the non-uniform anisotropic material parameters. The effectiveness of the proposed coordinate transformation method is verified by comparing the results from our method with those in the literature. Firstly, the results of a circular acoustic cloak in the literature are reproduced by using our finite element (FE) simulations for validation. Then, a comparison is made between the traditional coordinate transformation scheme and our new scheme for simulating an elliptical acoustic cloak. The results indicate that the proposed multi-origin coordinate transformation method has a better cloaking effect on the incident wave along the ellipse minor axis direction than the traditional method. This means that for the same object, an appropriate transformation scheme can be selected for different incident wave directions to achieve the optimal control effect. The validated scheme is further used to design an arch-shaped cloak composed of an upper semicircular area and a lower rectangular area, by combining the traditional single-centered coordinate transformation method for the semicircular area and the proposed multi-origin method for the rectangular area. The results show that the designed cloak can effectively control the wave propagation with significantly reduced acoustic pressure level. This work provides a flexible acoustic cloak design method applicable for arbitrary shapes and different wave incident directions, enriching the theory of acoustic cloaking based on coordinate transformation.  相似文献   

7.
Steering waves in elastic solids is more demanding than steering waves in electromagnetism or acoustics. As a result, designing material distributions which are the counterpart of optical invisibility cloaks in elasticity poses a major challenge. Waves of all polarizations should be guided around an obstacle to emerge on the downstream side as though no obstacle were there. Recently, we have introduced the direct-lattice-transformation approach. This simple and explicit construction procedure led to extremely good cloaking results in the static case. Here, we transfer this approach to the dynamic case, i.e., to elastic waves or phonons. We demonstrate broadband reduction of scattering, with best suppressions exceeding a factor of five when using cubic coordinate transformations instead of linear ones. To reliably and quantitatively test these cloaks efficiency, we use an effective-medium approach.  相似文献   

8.
One popular approach to cloaking objects from electromagnetic waves at moderately long wavelengths is the scattering cancelation technique. This mechanism is based on the use of a single homogeneous thin layer to cover an object of interest in order to provide scattering suppression in a given frequency band. This approach has also been recently extended to acoustic waves. This paper provides an investigation of the physical nature of scattering cancelation by a uniform thin layer for both electromagnetic and acoustic waves in inviscid fluids. Two distinct scattering cancelation regions are obtained within the available parameter space: a non-resonant plasmonic cloaking region and an anti-resonant cloaking region, which are identified and compared in both the electromagnetic and acoustic domains. Although both types of operations allow for the suppression of the dominant scattering orders, the resulting internal fields and physical functionality of the cloaks present distinct differences between the two domains. We discuss analogies and differences between these functionalities and their implications in electromagnetic and acoustic cloaking problems, with an insight into their practical implementation.  相似文献   

9.
A general process is proposed to experimentally design anisotropic inhomogeneous metamaterials obtained through a change of coordinates in the Helmholtz equation. The method is applied to the case of a cylindrical transformation that allows cloaking to be performed. To approximate such complex metamaterials we apply results of the theory of homogenization and combine them with a genetic algorithm. To illustrate the power of our approach, we design three types of cloaks composed of isotropic concentric layers structured with three types of perforations: curved rectangles, split rings and crosses. These cloaks have parameters compatible with existing technology and they mimic the behavior of the transformed material. Numerical simulations have been performed to qualitatively and quantitatively study the cloaking efficiency of these metamaterials.  相似文献   

10.
We start by a review of the chronology of mathematical results on the Dirichlet-to-Neumann map which paved the way toward the physics of transformational acoustics. We then rederive the expression for the (anisotropic) density and bulk modulus appearing in the pressure wave equation written in the transformed coordinates. A spherical acoustic cloak consisting of an alternation of homogeneous isotropic concentric layers is further proposed based on the effective medium theory. This cloak is characterized by a low reflection and good efficiency over a large bandwidth for both near and far fields, which approximates the ideal cloak with an inhomogeneous and anisotropic distribution of material parameters. The latter suffers from singular material parameters on its inner surface. This singularity depends upon the sharpness of corners, if the cloak has an irregular boundary, e.g. a polyhedron cloak becomes more and more singular when the number of vertices increases if it is star shaped. We thus analyze the acoustic response of a non-singular spherical cloak designed by blowing up a small ball instead of a point, as proposed in [Kohn, Shen, Vogelius, Weinstein, Inverse Problems 24, 015016, 2008]. The multilayered approximation of this cloak requires less extreme densities (especially for the lowest bound). Finally, we investigate another type of non-singular cloaks, known as invisibility carpets [Li and Pendry, Phys. Rev. Lett. 101, 203901, 2008], which mimic the reflection by a flat ground.  相似文献   

11.
We cloak a region from a known incident wave by surrounding the region with three or more devices that cancel out the field in the cloaked region without significantly radiating waves. Since very little waves reach scatterers within the cloaked region, the scattered field is small and the scatterers are for all practical purposes undetectable. The devices are multipolar point sources that can be determined from Green's formula and an addition theorem for Hankel functions. The cloaking devices are exterior to the cloaked region.  相似文献   

12.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

13.
The paper addresses an important issue of cloaking transformations for fourth-order partial differential equations representing flexural waves in thin elastic plates. It is shown that, in contrast with the Helmholtz equation, the general form of the partial differential equation is not invariant with respect to the cloaking transformation. The significant result of this paper is the analysis of the transformed equation and its interpretation in the framework of the linear theory of pre-stressed plates. The paper provides a formal framework for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm is proposed for designing a broadband square cloak for flexural waves, which employs a regularised push-out transformation. Illustrative numerical examples show high accuracy and efficiency of the proposed cloaking algorithm. In particular, a physical configuration involving a perturbation of an interference pattern generated by two coherent sources is presented. It is demonstrated that the perturbation produced by a cloaked defect is negligibly small even for such a delicate interference pattern.  相似文献   

14.
近年来,壁面滑移在纳米流变学、微流体力学、薄模润滑和微机电系统(MEMS)等领域越来越引起关注。以前大部分研究集中于表面初始极限剪应力对薄模润滑的壁面滑移和流体动力学的影响。本文通过一个极限剪切应力比例系数主要研究了与压力相关的壁面滑移滑动间隙流体动压力产生中的作用,发现极限剪切应力比例系数以相反的两种方式影响着流体膜的流体动力学:在高初始剪应力区使流体动力增加,但在低初始剪应力区使流体动力减小,这意味着就极限剪切应力比例系数影响流体动压力而言,存在一个初始极限剪切应力的转换点。但是在界面滑移存在时,较小的极限剪切应力比例系数总是产生较小的摩擦阻力。  相似文献   

15.
通过模型实验和数值模拟计算,研究了带有涡激振动抑制罩的圆截面柱体的水动力特性.模型实验主要测试了柱体上附加谐波型和类圆锥型涡激振动抑制罩的单摆结构在不同流速下发生涡激振动的性质;数值模拟则针对谐波型和圆锥型扰动,在雷诺数Re为102到105范围内,研究其水动力参数,如阻力、升力和涡脱落频率等,随扰动波长和波动强度的变化.模型实验结果表明,在直圆柱开始发生共振的流速下,带抑制罩的柱体的振幅显著降低,而在更高流速下则显著增大.数值模拟结果表明,谐波型和圆锥型扰动具有相似的水动力特性;且在不同Re时,阻力、升力和涡脱落频率具有相似的变化规律;随波动强度的增大,阻力一般逐渐增大,升力则在多数情况下先减小而后增大,而涡脱落频率一般逐渐减小.   相似文献   

16.
The intriguing concept of “anti-cloaking” has been recently introduced within the framework of transformation optics (TO), first as a “countermeasure” to invisibility-cloaking (i.e., to restore the scattering response of a cloaked target), and more recently in connection with “sensor invisibility” (i.e., to strongly reduce the scattering response while maintaining the field-sensing capabilities). In this paper, we extend our previous studies, which were limited to a two-dimensional cylindrical scenario, to the three-dimensional spherical case. More specifically, via a generalized (coordinate-mapped) Mie-series approach, we derive a general analytical full-wave solution pertaining to plane-wave-excited configurations featuring a spherical object surrounded by a TO-based invisibility cloak coupled via a vacuum layer to an anti-cloak, and explore the various interactions of interest. With a number of selected examples, we illustrate the cloaking and field-restoring capabilities of various configurations, highlighting similarities and differences with respect to the cylindrical case, with special emphasis on sensor-cloaking scenarios and ideas for approximate implementations that require the use of double-positive media only.  相似文献   

17.
In hydrodynamics and aerodynamics there is an area rule for nearly axisymmetric bodies. It states that the drag [1–3], the coefficient of heat transfer and the ablation [4], and also the wake parameters [5] of a three-dimensional body are equal to the analogous quantities for an axisymmetric body which has the same distribution of the cross sectional area along the axis. In some cases, the area rule holds for bodies which depart strongly from axial symmetry [6]. It is shown in the present paper that equality also holds for other integral quantities and not only in hydrodynamic problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 157–159, July–August, 1981.We thank Yu. B. Lifshits for helpful comments.  相似文献   

18.
Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.  相似文献   

19.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号