首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The interactions between cool flames and flames with repetitive extinction and ignition (FREI) of stoichiometric n-heptane/air mixture were studied using a micro flow reactor with a controlled temperature profile from 373 to 1300 K. Two different flame dynamics with and without cool flames were observed in reactors with inner diameters dinner of 1 and 2 mm. Cool flames and FREI are spatially separated at dinner= 1 mm, whereas interactions between cool flames and FREI are observed at dinner= 2 mm. At dinner= 1 mm, the brightness intensity from cool flames depends on the inlet velocity (uinlet). Approximately above uinlet= 10 cm/s, the brightness intensity from cool flames decreases with increasing inlet velocity, despite a large amount of mixture input. This is because before low temperature ignition occurs under higher inlet velocity conditions, the mixture archives temperature where negative temperature coefficient is dominant. Reaction front propagation speed of FREI decreases monotonically due to heat loss because the extinction points of FREI are located in higher temperatures than the cool flame region. At dinner= 2 mm, the acceleration of the reaction front in the cool flame region is confirmed experimentally, as predicted in our previous two-dimensional numerical simulations. Additionally, the instantaneous reaction front speed after autoignition is analyzed at dinner= 1 mm. The instantaneous reaction front speed decreases as the time from extinction to ignition tex_ig becomes longer because a moderate mixing zone of reactants and products is formed.  相似文献   

2.
3.
《Physics letters. A》2019,383(17):2114-2119
We provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the x,y,z-links (tx=t,ty=tz=1), defined on a honeycomb lattice. We have shown that the chiral gapless edge modes are described in the framework of the generalized Kitaev chain formalism, which makes it possible to calculate the Hall conductance of subbands for different filling and an arbitrary magnetic flux ϕ. At half-filling the gap in the center of the fermion spectrum opens for t>tc=2ϕ, a quantum phase transition in the 2D-topological insulator state is realized at tc. The phase state is characterized by zero energy Majorana states localized at the boundaries. Taking into account the on-site Coulomb repulsion U (where U<<1), the criterion for the stability of a topological insulator state is calculated at t<<1, tU. Thus, in the case of U>4Δ, the topological insulator state, which is determined by chiral gapless edge modes in the gap Δ, is destroyed.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Laminar natural gas flames are investigated at engine-relevant thermochemical conditions where the ignition delay time τ is short due to very high ambient temperatures and pressures. At these conditions, it is not possible to measure or calculate well-defined values for the laminar flame speed sl, laminar flame thickness δl, and laminar flame time scale τl=δl/sl due to the explosive thermochemical state. Here, the corresponding reference values, sR, δR, and τR=δR/sR, that account for the effects of autoignition, are numerically estimated to investigate the enhancement of flame propagation, and the competition with autoignition that arises under nominally autoignitive conditions (characterised here by the number τ/τR). Large values of τ/τR indicate that autoignition is unimportant, values near or below unity indicate that flame propagation is not possible, and intermediate values indicate that a combination of both flame propagation and autoignition may be important, depending upon factors such as device geometry, turbulence, stratification, et cetera. The reference quantities are presented for a wide range of temperatures, equivalence ratios, pressures, and hydrogen concentrations, which includes conditions relevant to stationary gas turbine reheat burners and boosted spark ignition engines. It is demonstrated that the transition from flame propagation to autoignition is only dependent on residence time, when the results are non-dimensionalised by the reference values. The temporal evolution of the reference values are also reported for a modelled boosted SI engine. It is shown that the nominally autoignitive conditions enhance flame propagation, which may be an ameliorating factor for the onset of engine knock. The calculations are performed using a recently-developed, detailed 177 species mechanism for C0–C3 chemistry that is derived from theoretical chemistry and is suitable for a wide range of thermochemical conditions as it is not tuned or optimised for a particular operating condition.  相似文献   

12.
13.
A “cut-off” Coulomb potential taking into account the finite size of the nucleus is finite, and a solution of the Dirac equation can be constructed for any energy, both positive and negative. In the paper we develop an exact solution of the Dirac equation for a fixed value of the total momentum j for the whole spectrum of energies, which allows us to determine the vacuum charge and its spatial distribution. We consider nuclei with different charges Z, both Z<Zc and Z>Zc, where Z=Zc is the “critical” charge, at which the energy of the lowest discrete state reaches the boundary of the lower continuum ε=?mc2. Polarization of vacuum is determined, and the vacuum charge for several values of Z is found. For an undercritical nuclear charge, Z<Zc, the total vacuum charge appears to be zero, while for Z>Zc, the vacuum gets rearranged, and the total vacuum charge becomes equal to ?2e. The vacuum charge distribution for j=1/2 for both undercritical and overcritical nuclei is calculated.  相似文献   

14.
Physically natural assumption says that any relaxation process taking place in the time interval [t0,t2], t2>t00 may be represented as a composition of processes taking place during time intervals [t0,t1] and [t1,t2] where t1 is an arbitrary instant of time such that t0t1t2. For the Debye relaxation such a composition is realized by usual multiplication which claim is not valid any longer for more advanced models of relaxation processes. We investigate the composition law required to be satisfied by the Cole-Cole relaxation and find its explicit form given by an integro-differential relation playing the role of the time evolution equation. The latter leads to differential equations involving fractional derivatives, either of the Caputo or the Riemann-Liouville senses, which are equivalent to the special case of the fractional Fokker-Planck equation satisfied by the Mittag-Leffler function known to describe the Cole-Cole relaxation in the time domain.  相似文献   

15.
16.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

17.
18.
19.
This work is devoted to quantify the predictive uncertainty in RANS simulation of a non-premixed lifted flame due to uncertainty in the model parameters of the scalar dissipation rate transport equation. The uncertainty propagation and the global sensitivity analysis of the effect of such parameters on the quantities of interest (QoIs) is performed employing Polynomial Chaos Expansions as surrogate models of the uncertain response. This approach is applied on a lifted methane-air jet flame in vitiated coflow, already experimentally investigated by Cabra et al [1]. The results show the effectiveness of the approach to provide predictions with estimates of uncertainty. It is shown that the the uncertainty in the mixture fraction and temperature is negligible as long as only pure mixing happens, then it becomes significant in the regions where ignition begins, starting from z/D=30. Of the four parameters considered, i.e., CD1, CD2, CP1 and CP2, main and total effect sensitivity indices show that the largest contribution to the uncertainty in the flame temperature is given by the two dissipation parameters CD1 and CD2, while the production parameter CP2 has almost negligible impact on the predictions. Lastly, the surrogate models are used to determine an optimum set of parameters that minimizes the distance with the experimental measures, leading to improved predictions of the QoIs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号