首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
2.
This study investigates the peristaltic transport of magnetohydrodynamic (MHD) Carreau–Yasuda nanofluid through an asymmetric channel. Viscous dissipation, Joule heating and Hall effects are also included in the analysis. Velocity, thermal and concentration slip conditions are considered. The problem is modeled subject to long wavelength and low Reynolds number assumptions. Resulting nonlinear equations are numerically solved. Impact of embedded parameters on the fluid velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are examined. Graphical results show that an escalation in the strength of appliedmagnetic field and increase in the value of Hall parameter reduce the velocity of nanofluid. Brownian motion and thermophoresis effects increase the temperature of the nanofluid. The present study shows an excellent agreement with the previously available studies in the limiting case.  相似文献   

3.
The peristaltic flow of viscous nanofluid in a channel with compliant walls is examined. The flow analysis is presented in the presence of Hall and ion-slip effects. The resulting equations through long wavelength and low Reynolds number approaches are solved. Stream function is obtained in closed form. Attention has been given to the influence of Brownian motion, thermophoresis and Hall and ion slip parameters on the velocity, temperature and concentration profiles. The results show an affective increase in the temperature and nanoparticles concentration with the increase in the strength of Brownian motion effects. Similar results are observed for Hall and ion slip parameters. Further heat transfer coefficient is an increasing function of Hall and ion-slip parameters. Also decrease in the size of trapped bolus is shown for Hall and ion-slip parameters.  相似文献   

4.
The novel characteristics of magnetic field and entropy generation in mixed convective flow of Carreau fluid towards a stretched surface are investigated.Buongiornio nanoliquid model consists of thermophoresis and Brownian movement aspects is opted for analysis.Energy expression is modeled subject to thermal radiation and viscous dissipation phenomenon.Concentration by zero mass flux condition is implemented.Consideration of chemical reaction and activation energy characterizes the mass transfer mechanism.Total entropy generation rate and Bejan number is formulated.The utilization of transformation variables reduces the PDEs into non-linear ODEs.The obtained nonlinear complex problems are computed numerically through Shooting scheme.The impact of involved variables like local Weissenberg number,magnetic parameter,thermal radiation parameter,Brownian motion parameter,thermophoresis parameter,buoyancy ratio parameter,mixed convection parameter,Prandtl parameter,Eckert number,Schmidt number,non-dimensional activation energy parameter,chemical reaction parameter,Brinkman number,dimensionless concentration ratio variable,diffusive variable and dimensionless temperature ratio variable on velocity,temperature,nanoparticles concentration,entropy generation,Bejan number,surface drag force and heat transfer rate are examined through graphs and tables.  相似文献   

5.
The candid intension of this article is to inspect the heat and mass transfer of a magnetohydrodynamic tangent hyperbolic nanofluid. The nanofluid flow has been assumed to be directed by a wedge on its way. In addition, the collective stimulus of the convective heating mode with thermal radiation is inspected. The governing set of PDEs is rendered into that of the coupled nonlinear ODEs. The resulting ordinary differential equations are then solved by the well known shooting technique for two different cases; the flow over a static wedge and flow over a stretching wedge. The impact of intricate physical parameters on the velocity, temperature and concentration profiles is analyzed graphically. It is noticed that the intensifying values of the generalized Biot number, Brownian motion parameter, thermophoresis parameter and Weissenberg number enhances the dimensionless temperature profile.  相似文献   

6.
In this paper, the classical von Kármán swirling flow problem due to a rotating disk is modeled and studied for the rate type Maxwell nanofluid together with heat and mass transfer mechanisms. The model under consideration predicts the relaxation time characteristics. The novel aspects of thermophoresis and Brownian motion features due to nanoparticles are investigated by employing an innovative Buongiorno’s model. The analysis further explores the impact of linear Rosseland radiation on heat transfer characteristics. The concept of boundary layer approximations is utilized to formulate the basic governing equations of Maxwell fluid. The dimensionless form of a system of ordinary differential equations is obtained through similarity approach adopted by von Kármán. The system of equations is integrated numerically in domain [0,∞) by using bvp midrich scheme in Maple software. The obtained results intimate that higher rotation raises the radial and angular velocity components. The nano-particles concentration enhances with Brownian motion parameter. Further, the heat transfer rate at the disk surface diminishes with thermophoresis parameter. The achieved numerical computations of velocity profiles, friction coefficient and Nusselt number are matched in limiting cases with previously published literature and an outstanding agreement is observed.  相似文献   

7.
The present work aims to investigate transverse Oldroyd-B nanofluid flow on a stretched panel with consideration of internal heat generation. Buongiorno model is utilized to study influence of thermophoresis and Brownian motion effects. A numerical procedure known as Keller box algorithm is used to solve the governed physical model. Graphically velocity, temperature and concentration of nanoparticles are expressed. Also, concerned physical measures such as heat and mass transfer are investigated numerically. The simulations performed revealed that fluid parameters play a significant role in heat transfer under Brownian motion and thermophoresis effects. Local heat flux is elevated while local mass flux is suppressed with enhancing Brownian motion parameter. Streamlines pattern exhibits that flow is more inclined in the presence of Deborah number effects. To the best of our knowledge, transverse flow of an Oldroyd-B type fluid which incorporates the thermal relaxation effects has never been reported before in the presence of Brownian motion and internal heating phenomenon. Therefore we intend to discuss these features in detail. The obtained results are a novel contribution, which can be benchmark for further relevant academic research related to polymer industry.  相似文献   

8.
The present work aims to investigate transverse Oldroyd-B nanofluid flow on a stretched panel with consideration of internal heat generation. Buongiorno model is utilized to study influence of thermophoresis and Brownian motion effects. A numerical procedure known as Keller box algorithm is used to solve the governed physical model.Graphically velocity, temperature and concentration of nanoparticles are expressed. Also, concerned physical measures such as heat and mass transfer are investigated numerically. The simulations performed revealed that fluid parameters play a significant role in heat transfer under Brownian motion and thermophoresis effects. Local heat flux is elevated while local mass flux is suppressed with enhancing Brownian motion parameter. Streamlines pattern exhibits that flow is more inclined in the presence of Deborah number effects. To the best of our knowledge, transverse flow of an Oldroyd-B type fluid which incorporates the thermal relaxation effects has never been reported before in the presence of Brownian motion and internal heating phenomenon. Therefore we intend to discuss these features in detail. The obtained results are a novel contribution, which can be benchmark for further relevant academic research related to polymer industry.  相似文献   

9.
M. Irfan  M. Khan  W.A. Khan  M. Ayaz 《Physics letters. A》2018,382(30):1992-2002
Nanofluids are forthcoming new generation heat transfer fluids, which have been scrutinized precisely, in current years. Thermophysical assets of these fluids have noteworthy impact on their heat transfer features. In this current investigation a mathematical relation for two dimensional (2D) flow of magnetite Maxwell nanofluid influenced by a stretched cylinder is established. To visualize the stimulus of Brownian moment and thermophoresis phenomena on Maxwell fluid Buongiorno's relation has been considered. Moreover, heat sink/source and convective condition are also presented for heat transport mechanism. The homotopic scheme has been developed for the solutions of nonlinear ordinary differential equations (ODEs). The achieved outcomes are planned and consulted in aspects for somatic parameters. It is noteworthy that the velocity of Maxwell fluid display conflicting performance for curvature parameter and Deborah number. It is also reported that the liquid velocity decays for magnetic parameter, whereas the nanoliquid temperature and concentration field enhance for magnetic parameter. Furthermore, the liquid temperature intensifies for the progressive values of thermophoresis parameter and Brownian motion. Additionally, endorsement of current significances is organized via benchmarking with earlier famous limiting situations and we pledge a marvelous communication with these outcomes.  相似文献   

10.
The flow, heat and mass transfer of water-based nanofluid are examined between two horizontal parallel plates in a rotating system. The effects of Brownian motion, thermophoresis, viscosity and Hall current parameters are considered. The governing partial differential equations are reduced to ordinary differential equations that are then solved numerically using the Runge–Kutta–Fehlberg method. Validation of numerical solution is achieved with an exact solution of primary velocity and found to be in good agreement. Results show that both surfaces experience opposite behavior regarding skin friction, Nusselt and Sherwood numbers in both primary and secondary flows. These physical quantities depend upon dimensionless parameters and numbers.  相似文献   

11.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption.Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method(HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   

12.
The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow. The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction. The buoyancy effects in terms of temperature and concentration differences are inserted in the $x$-momentum equation. The aspects of heat and mass transfer are studied using dimensionless thermophoresis, Schmidt and Brownian motion parameters. The governing coupled partial differential system (PDEs) is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations. The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c. Finally, the quantitative effects of emerging dimensionless quantities on the non-dimensional velocity, temperature and mass concentration in the boundary layer are conferred graphically, and inferences are drawn that important quantities of interest are substantially affected by these parameters. It is concluded that non-similar modeling, in contrast to similar models, is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.  相似文献   

13.
The magnetohydrodynamic (MHD) stagnation point flow of Casson nanofluid over a nonlinear stretching sheet in the presence of velocity slip and convective boundary condition is examined. In this analysis, various effects such as velocity ratio, viscous dissipation, heat generation/absorption and chemical reaction are accentuated. Possessions of Brownian motion and thermophoresis are also depicted in this study. A uniform magnetic field as well as suction is taken into account. Suitable similarity transformations are availed to convert the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations and then series solutions are secured using a homotopy analysis method (HAM). Notable accuracy of the present results has been obtained with the earlier results. Impact of distinct parameters on velocity, temperature, concentration, skin friction coefficient,Nusselt number and Sherwood number is canvassed through graphs and tabular forms.  相似文献   

14.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption. Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method (HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   

15.
This article concerns the analysis of an unsteady stagnation point flow of Eyring-Powell nanofluid over a stretching sheet. The influence of thermophoresis and Brownian motion is also considered in transport equations. The nonlinear ODE set is obtained from the governing nonlinear equations via suitable transformations. The numerical experiments are performed using the Galerkin scheme. A tabular form comparison analysis of outcomes attained via the Galerkin approach and numerical scheme (RK-4) is available to show the credibility of the Galerkin method. The numerical exploration is carried out for various governing parameters, namely, Brownian motion, steadiness, thermophoresis, stretching ratio, velocity slip, concentration slip, thermal slip, and fluid parameters, and Hartmann, Prandtl and Schmidt numbers. The velocity of fluid enhances with an increase in fluid and magnetic parameters for the case of opposing, but the behavior is reversed for assisting cases. The Brownian motion and thermophoresis parameters cause an increase in temperature for both cases (assisting and opposing). The Brownian motion parameter provides a drop-in concentration while an increase is noticed for the thermophoresis parameter. All the outcomes and the behavior of emerging parameters are illustrated graphically. The comparison analysis and graphical plots endorse the appropriateness of the Galerkin method. It is concluded that said method could be extended to other problems of a complex nature.  相似文献   

16.
A numerical study is carried out to display the effects of surface roughness on mixed convective nanofluid flow along an exponentially stretching surface in presence of suction/injection. The dimensional coupled nonlinear partial differential equations are transformed into dimensionless form by using suitable non-similar transformations. The resulting equations are solved by utilizing the Quasilinearization technique as well as the implicit finite difference scheme. The influence of several non-dimensional parameters on various profiles and gradients is examined. The results are presented graphically, which are analyzed to depict the effects of various physical parameters, for example, Brownian diffusion parameter Nb, thermophoresis parameter Nt, suction/blowing parameter A and Lewis number Le. In order to analyse the influence of surface roughness on mixed convective nanofluid flow, the major part of this research paper is devoted to investigate the effects of the small parameter α and frequency parameter n over the gradients defined at the wall. The results reveal that an increase in the values of Nb and Nt, enhances the velocity and temperature of the fluid. The increasing value of suction parameter (A > 0) reduces the velocity of the fluid. Further, the increasing values of Nb and Le decrease the nanoparticle volume fraction profile. The sinusoidal variations are observed in the skin-friction coefficient, Nusselt number as well as the nanoparticle Sherwood number. Moreover, with the addition of nanoparticles, the magnitude of the skin-friction coefficient increases, while the magnitude of heat transfer rate decreases, significantly.  相似文献   

17.
The current investigation highlights the mixed convection slip flow and radiative heat transport of uniformly electrically conducting Williamson nanofluid yield by an inclined circular cylinder in the presence of Brownian motion and thermophoresis parameter.A Lorentzian magnetic body force model is employed and magnetic induction effects are neglected.The governing equations are reduced to a system of nonlinear ordinary differential equations with associated boundary conditions by applying scaling group transformations.The reduced nonlinear ordinary differential equations are then solved numerically by Runge-Kutta-Fehlberg fifth-order method with shooting technique.The effects of magnetic field,Prandtl number,mixed convection parameter,buoyancy ratio parameter,Brownian motion parameter,thermophoresis parameter,heat generation/absorption parameter,mass transfer parameter,radiation parameter and Schmidt number on the skin friction coefficient and local Nusselt are analyzed and discussed.It is found that the velocity of the fluid decreases with decrease in curvature parameter,whereas it increases with mixed convection parameter.Further,the local Nusselt number decreases with an increase in the radiation parameter.The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.  相似文献   

18.
19.
Present study investigates entropy generation analysis for peristaltic motion of hybrid nanofluid. Hybrid nanofluid is composed of iron-oxide and copper nanoparticles suspended in water. Effects of Hall current, Ohmic heating and mixed convection are taken into account. Governing equations are simplified by utilizing lubrication approach. The numerical solutions for resulting system of differential equations are obtained with the aid of Shooting method. Attention has been given to the analysis of hybrid nanoparticles, Hall parameter and Grashoff number on entropy generation, heat transfer rate, velocity profile and pressure gradient. Outcomes reveal that insertion of nanoparticles decreases the temperature of hybrid nanofluid. It is found that increase in Hall parameter reduces the heat transfer rate at wall. Increment in Hall parameter reduces the entropy generation. Velocity and pressure gradient increases by enhancing Grashoff number. It is believed that the present flow model can prove useful in improving the efficiency of similar thermodynamical systems.  相似文献   

20.
This article reports the simultaneous properties of variable conductivity and chemical reaction in stagnation point flow of magneto Maxwell nanofluid.The Buongiorno's theory has been established to picture the inducement of Brownian and thermophrotic diffusions effects.Additionally,the aspect of heat sink/source is reported.The homotopic analysis method(HAM) has been worked out for the solution of nonlinear ODEs.The behavior of inferential variables on the velocity,temperature,concentration and local Nusselt number for Maxwell nanofluid are sketched and discussed.The attained outcomes specify that both the temperature and concentration of Maxwell fluid display analogous behavior,while the depiction of Brownian motion is quite conflicting on both temperature and concentration fields.It is further noted that the influence of variable thermal conductivity on temperature field is similar to that of Brownian motion parameter.Moreover,for the confirmation of our study comparison tables are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号