首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Applied Mathematical Modelling》2014,38(17-18):4480-4492
Reservoir flood control operation is a complex engineering optimization problem with a large number of constraints. In order to solve this problem, a chaotic particle swarm optimization (CPSO) algorithm based on the improved logistic map is presented, which uses the discharge flow process as the decision variables combined with the death penalty function. According to the principle of maximum eliminating flood peak, a novel flood control operation model has been established with the goal of minimum standard deviation of the discharge flow process. At the same time, a piecewise linear interpolation function (PLIF) is applied to deal with the constraints for solving objective function. The performance of the proposed model and method is evaluated on two typical floods of Three Gorges reservoir. In comparison with existing models and other algorithms, the proposed model and algorithm can generate better solutions with the minimal flood peak discharge and the maximal peak-clipping rate for reservoir flood control operation.  相似文献   

2.
The results from a 3D non-linear kε turbulence model with vegetation are presented to investigate the flow structure, the velocity distribution and mass transport process in a straight compound open channel and a curved open channel. The 3D numerical model for calculating flow is set up in non-orthogonal curvilinear coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLEC algorithm is applied to acquire the coupling of velocity and pressure. The non-linear kε turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The water level of this model is determined from 2D Poisson equation derived from 2D depth-averaged momentum equations. For concentration simulation, an expression for dispersion through vegetation is derived in the present work for the mixing due to flow over vegetation. The simulated results are in good agreement with available experimental data, which indicates that the developed 3D model can predict the flow structure and mass transport in the open channel with vegetation.  相似文献   

3.
L. Esmaeili  B. Schweizer 《PAMM》2011,11(1):567-568
The pressure field in thin fluid films can quite precisely be calculated by Reynolds fluid-film equation. In some problems, it may be useful to couple thin fluid-films with general 2D or 3D fluid flows. In the current work, we analyze the fluid flow, pressure and temperature field in a hydrodynamic journal bearing with a rectangular oil groove. Pressure and temperature in the fluid gap are calculated by means of the Reynolds equation and the 2D energy equation. Cavitation effects are taken into account by incorporating a 2-phase cavitation approach. In order to calculate the velocity and pressure field in the oil groove, the 2D Navier-Stokes equations are used; the temperature distribution in the oil groove is computed by means of the 2D energy equation. Appropriate coupling conditions for velocity, pressure and temperature are formulated in order to couple the flow in the fluid gap with the flow in the oil groove. Thermal expansion of journal shaft and bearing housing are also taken into account, since the bearing clearance changes with increasing temperature. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
对洪灾系统作综合风险研究,已是防洪减灾理论发展的一大趋势.在洪灾风险的同异反综合分析方法(概念模型)的基础上,以不确定性系数i对风险的影响为切入点,并进行适当的扩展与变换,将同异反综合分析方法进一步深入,建立了洪灾综合风险分析的模拟模型框架,初步得到了洪灾综合风险分析的可行途径.  相似文献   

5.
The aim of this work is to simulate rarefied gas flow in complex geometries, under flow conditions that range from the hydrodynamic, through the transitional, to the molecular regimes. Existing computational models apply to molecular or viscous flow, but the treatment of the transitional flow is still underdeveloped.To deal with the difficult transitional flow, two models with overlapping ranges of applicability are introduced. A direct simulation Monte Carlo (DSMC) type model, which can be used in the molecular and up to the lower transitional flow, has been designed. For the viscous to the upper transitional flow, a numerical model using a particle method is proposed. The objective is to obtain a smooth transition between the probabilistic simulation of particle histories and the deterministic approach of the solution of partial differential equations.The DSMC model has been successfully applied to molecular and lower transitional flow in a complex geometry with stationary and moving boundaries. The test results agree well with published data. The particle method was tested using simplified Navier-Stokes equations in a channel. Preliminary results in the low viscous range seem to indicate that the approach is viable.  相似文献   

6.
The paper discusses recursive computation problems of the criterion functions of several least squares type parameter estimation methods for linear regression models, including the well-known recursive least squares (RLS) algorithm, the weighted RLS algorithm, the forgetting factor RLS algorithm and the finite-data-window RLS algorithm without or with a forgetting factor. The recursive computation formulas of the criterion functions are derived by using the recursive parameter estimation equations. The proposed recursive computation formulas can be extended to the estimation algorithms of the pseudo-linear regression models for equation error systems and output error systems. Finally, the simulation example is provided.  相似文献   

7.
Vincent Heuveline  Frank Strauß 《PAMM》2007,7(1):4140007-4140008
We propose a numerical scheme which aims at solving shape optimization problems in the context of hydrodynamic stability. It is the goal to minimize the drag and ensure hydrodynamic stability by modification of parts of the underlying geometry. The stability issues are represented by eigenvalue constraints. Numerical results for a test case show that a transition from an unstable design into a stable one is attainable by considering an adequate change of the geometry. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
针对混流U型拆卸线平衡排序问题,考虑拆卸时间不确定,建立了该问题最小拆卸线平均闲置率、尽早拆卸危害和高需求零部件、最小化平均方向改变次数的多目标优化模型,并提出一种基于分解和动态邻域搜索的混合多目标进化算法(Hybrid Multi-objective Evolutionary Algorithm Based on Decomposition, HMOEA/D)。该算法通过采用弹性任务分配策略、动态邻域结构和动态调整权重以保证解的可行性并搜索得到分布较好的非劣解集。最后,仿真求解实验设计技术(DOE)生成的测试算例,结果表明HMOEA/D较其它算法能得到更接近Pareto最优、分布更好的近似解集。  相似文献   

9.
This work addresses the problem of regularized linear least squares (RLS) with non-quadratic separable regularization. Despite being frequently deployed in many applications, the RLS problem is often hard to solve using standard iterative methods. In a recent work [M. Elad, Why simple shrinkage is still relevant for redundant representations? IEEE Trans. Inform. Theory 52 (12) (2006) 5559–5569], a new iterative method called parallel coordinate descent (PCD) was devised. We provide herein a convergence analysis of the PCD algorithm, and also introduce a form of the regularization function, which permits analytical solution to the coordinate optimization. Several other recent works [I. Daubechies, M. Defrise, C. De-Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math. LVII (2004) 1413–1457; M.A. Figueiredo, R.D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process. 12 (8) (2003) 906–916; M.A. Figueiredo, R.D. Nowak, A bound optimization approach to wavelet-based image deconvolution, in: IEEE International Conference on Image Processing, 2005], which considered the deblurring problem in a Bayesian methodology, also obtained element-wise optimization algorithms. We show that the last three methods are essentially equivalent, and the unified method is termed separable surrogate functionals (SSF). We also provide a convergence analysis for SSF. To further accelerate PCD and SSF, we merge them into a recently developed sequential subspace optimization technique (SESOP), with almost no additional complexity. A thorough numerical comparison of the denoising application is presented, using the basis pursuit denoising (BPDN) objective function, which leads all of the above algorithms to an iterated shrinkage format. Both with synthetic data and with real images, the advantage of the combined PCD-SESOP method is demonstrated.  相似文献   

10.
多能耦合系统是未来分布式能源供给方式的重要发展方向。为了实现电热耦合能源供给系统的合理规划、促进能源供给与消费的经济与环保的协调发展,提出一种面向电热耦合能源系统的综合能源系统双阶段规划优化方法。模型的第一阶段是在投资和环境最优的目标下实现电热耦合综合能源系统的合理规划,第二阶段是在考虑设备运行特性的基础上对规划的结果进行运行优化,以获得能源系统的最优运行方案,并从多个指标验证规划方案的合理性。利用NSGA-II算法求得模型进的帕累托解集,使用多准则妥协优化法从帕累托解集中决策出最优配置方案。仿真结果表明,提出的双阶段多目标综合能源规划方法能够实现能源供给系统的经济与环保双优。  相似文献   

11.
A new method for the calculation of fluid-structure interaction (FSI) of highly flexible bodies is presented. This innovative algorithm demonstrates the strong coupling of a commercial computational fluid dynamics code with an in-house coded structural solver. The strong response of the pressure distribution to the displacement can be approximated by a reduced order model for the fluid solver. The Jacobian of this reduced order model is then used in the structural solver to obtain a stable and full implicit iteration scheme. The method is demonstrated on a 2D model of a flexible aortic valve during the cardiac cycle. Furthermore, the model is able to calculate shear stresses on the leaflet.  相似文献   

12.
Decomposition based multi-objective evolutionary algorithm (MOEA/D) has been proved to be effective on multi-objective optimization problems. However, it fails to achieve satisfactory coverage and uniformity on problems with irregularly shaped Pareto fronts, like the reservoir flood control operation (RFCO) problem. To enhance the performance of MOEA/D on the real-world RFCO problem, a Pareto front relevant (PFR) decomposition method is developed in this paper. Different front the decomposition method in the original MOEA/D which is based on a unique reference point (i.e. the estimated ideal point), the PFR decomposition method uses a set of reference points which are uniformly sampled from the fitting model of the obtained Pareto front. As a result, the PFR decomposition method can provide more flexible adaptation to the Pareto front shapes of the target problems. Experimental studies on benchmark problems and typical RFCO problems at Ankang reservoir have illustrated that the proposed PFR decomposition method significantly improves the adaptivity of MOEA/D to the complex Pareto front shape of the RFCO problem and performs better both in terms of coverage and uniformity.  相似文献   

13.
This paper studies the modelling and identification problems for multi-input single-output (MISO) systems with colored noises. In order to obtain the unbiased recursive estimates of the systems, this paper presents a recursive least squares (RLS) identification algorithm based on bias compensation technique. The basic idea is to eliminate the estimation bias by adding a correction term in the least squares (LS) estimates, a set of stable digital prefilters are suitably designed to preprocess the input sampled data from multi-input channels for the purpose of getting the bias term arisen by colored noises in LS estimates, and further to derive a bias compensation based RLS algorithm. The performance of the developed method is both analyzed theoretically and shown by means of simulation results.  相似文献   

14.
Reduced-order model (ROM) based on proper orthogonal decomposition (POD) is a fast computational fluid dynamics (CFD) method and has been widely applied to pure flow or heat conduction problems in the past. In this paper, the typical 2D Rayleigh–Bénard convection (RBC) in a square cavity was set as a research target. Firstly, the POD-ROM of 2D RBC problem was constructed at Ra = 107, Pr = 0.71. Combining with direct numerical simulation (DNS) databases, a closure model (CM) was then proposed to correct the evolution process of POD-ROM. Based on the proposed CM, we realized the prediction of flow evolution for a new flow case under the parameters different from that used to get its POD eigenmodes. It showed that the proposed POD-ROM with CM could be able to predict the dynamics of new flow cases. Moreover, the corresponding method proposed in the present study can be also easily extended to other types of flow-heat coupling problems, such as natural heat convection, etc.  相似文献   

15.
Concurrent multiscale method is a spatial and temporal combination of two different scale models for describing the micro/meso and macro mixed behaviors observed in strain localization, failure and phase transformation processes, etc. Most of the existing coupling schemes use the displacement compatibility conditions to glue different scale models, which leads to displacement continuity and stress discontinuity for the obtained multiscale model. To overcome stress discontinuity, this paper presented a multiscale method based on the generalized bridging domain method for coupling the discrete element (DE) and finite element (FE) models. This coupling scheme adopted displacement and stress mixed compatibility conditions. Displacements that were interpolated from FE nodes were prescribed on the artificial boundary of DE model, while stresses at numerical integration points that were extracted from DE contact forces were applied on the material transition zone of FE model (the coupling domain and the artificial boundary of FE model). In addition, this paper proposed an explicit multiple time-steps integration algorithm and adopted Cundall nonviscous damping for quasi-static problems. DE and FE parameters were calibrated by DE simulations of a biaxial compression test and a deposition process. Numerical examples for a 2D cone penetration test (CPT) show that the proposed multiscale method captures both mesoscopic and macroscopic behaviors such as sand soil particle rearrangement, stress concentration near the cone tip, shear dilation, penetration resistance vibration and particle rotation, etc, during the cone penetration process. The proposed multiscale method is versatile for maintaining stress continuity in coupling different scale models.  相似文献   

16.
In this paper, a robust bi-level optimization model is developed for a supply–distribution relief network under uncertainty in demand and supply parameters. It optimizes the relief operating costs as well as considering a penalty term for unsatisfied victims’ demands. Moreover, the proposed framework optimizes the relief commodity flow in a relief chain along with the supply risk minimization by identifying the suppliers with a lower risk. This paper proposes an integrated optimization method in which the supply risk value for each supplier is obtained via the TOPSIS method. Next, these values are utilized in a robust bi-level model to select appropriate suppliers and allocate orders. Finally, the robustness and effectiveness of the proposed model are demonstrated by a case of flood disaster.  相似文献   

17.
针对现有船舶过闸排队规则的欠缺,基于“限时服务规则”,构建复线船闸多目标双层优化调度模型:上层模型用于获得两个闸室安全区域的船舶排布可行方案;下层模型用于获得不同船舶排布可行方案的优化闸次数。下层模型分两个阶段完成:对符合“限时服务规则”的船舶,构建以闸次最少为目标的0-1规划模型,获得此类船舶安排的闸次;对其余船舶按照“先到先服务规则”,构建以闸次最少、闸室利用率最大为目标的多目标决策模型,获得不同船舶排布可行方案应该安排的频次。以位于江苏省干线航道上的某复线船闸某日24小时内过闸船舶的数据为例,计算结果表明:采用本文优化模型获得的优化方案与“经验编排方式”相比,两座船闸各节约2个闸次,两个船闸的平均闸室利用率分别提高了3.66和4.72个百分点。  相似文献   

18.
本文提出了一种求解复杂边界旋转Navier-Stokes方程的微分几何方法及其二度并行算法.此方法可用于求解透平机械内部叶片间流动和飞行器外部绕流等复杂流动问题.假设流动区域可以用一系列光滑曲面■_k,k=1,2,…,K分割为一系列子区域(称作流层),通过应用微分几何的方法,三维N-S算子可以分解为两类算子之和:建立在曲面■_k切空间上"膜算子"和曲面■_k法线方向的"挠曲算子",将挠曲算子应用欧拉中心差商来逼近,由此得到建立在■_k上的"2D-3C"N-S方程.求解2D-3C N-S方程并且反复迭代直到收敛.我们得到"二度并行算法",它是2D-3C N-S方程并行算法与k方向的同时并行.这个算法的优点在于,(1)可以改进由于复杂边界造成的不规则三维网格引起的逼近解的精度;(2)为克服边界层的数值效应,在边界层内可以构造很密的流层,形成三维多尺度的网格,是一个很好的边界层算法;(3)这个方法不同于经典的区域分解算法,这里的每个子区域只需要求解一个"2D-3C"N-S方程,而经典区域分解方法要在每个子区域上求解三维问题.  相似文献   

19.
L. Formaggia  A. Moura  F. Nobile 《PAMM》2006,6(1):27-30
Three-dimensional (3D) simulations of blood flow in medium to large vessels are now a common practice. These models consist of the 3D Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall structure. However, it is still computationally unaffordable to simulate very large sections, let alone the whole, of the human circulatory system with fully 3D fluid-structure interaction models. Thus truncated 3D regions have to be considered. Reduced models, one-dimensional (1D) or zero-dimensional (0D), can be used to approximate the remaining parts of the cardiovascular system at a low computational cost. These models have a lower level of accuracy, since they describe the evolution of averaged quantities, nevertheless they provide useful information which can be fed to the more complex model. More precisely, the 1D models describe the wave propagation nature of blood flow and coupled with the 3D models can act also as absorbing boundary conditions. We consider in this work the coupling of a 3D fluid-structure interaction model with a 1D hyperbolic model. We study the stability of the coupling and present some numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We compared flood mapping techniques using a one‐dimensional (1D) hydraulic model HEC‐RAS and two‐dimensional (2D) LISFLOOD‐FP for a 10‐km reach of Gorgan River in Iran. Both models were run using the same hydrologic input data. The input into the models was a steady discharge of 90 cm, corresponds to a flood peak occurred on March 25, 2012. Flood maps generated using these two models were compared with an observed flood inundation map, using F‐statistic. The roughness coefficients of the models were calibrated by maximizing the value of the F‐statistic. Based on the F‐statistic, LISFLOOD‐FP gives a slightly better result (F = 0.69) than HEC‐RAS (F = 0.67). Visual comparison of the flood extents generated by the two models showed reasonably good agreement. Validation was done using a flood event occurred on May 31, 2014. The LISFLOOD‐FP model gave a better result for validation as well. The 2D model showed more consistency in comparison with the 1D model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号