首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-frequency oscillations can occur in hydropower systems under in the new context of power system and the classical controller for hydro-turbine governing systems need to be enhanced with the purpose of improving its stability. We propose a controller based on passivity theory with the aim of damping oscillations in a power system. Passivity-based control arises as a natural choice for hydro-turbine governing system since its open-loop dynamic has a port-Hamiltonian structure, which allows designing a controller that preserves the passive structure in closed-loop via interconnection and damping reassignment. The proposed controller considers the complete non-linear model of the system and guarantees global asymptotic stability in the sense of Lyapunov. Time-domain simulations demonstrate the robustness and proper performance of the proposed methodology under different operative conditions when is compared with the classical controllers.  相似文献   

2.
This paper aims to study the stability for primary frequency regulation of hydro-turbine governing system with surge tank. Firstly, a novel nonlinear mathematical model of hydro-turbine governing system considering the nonlinear characteristic of penstock head loss is introduced. The nonlinear state equations under opening control mode and power control mode are derived. Then, the nonlinear dynamic performance of nonlinear hydro-turbine governing system is investigated based on the stable domain for primary frequency regulation. New feature of the nonlinear hydro-turbine governing system caused by the nonlinear characteristic of penstock head loss is described by comparing with a linear model, and the effect mechanism of nonlinear characteristic of penstock head loss is revealed. Finally, the concept of critical stable sectional area of surge tank for primary frequency regulation is proposed and the analytical solution is derived. The combined tuning and optimization method of governor parameters and sectional area of surge tank is proposed. The results indicate that for the primary frequency regulation under opening control mode and power control mode, the nonlinear hydro-turbine governing system is absolutely stable and conditionally stable, respectively. The stability of the nonlinear hydro-turbine governing system and linear hydro-turbine governing system is the same under opening control model and different under power control model. The nonlinear characteristic of penstock head loss mainly affects the initial stage of dynamic response process of power output, and then changes the stability of the nonlinear system. The critical stable sectional area of surge tank makes the system reach critical stable state. The governor parameters and critical stable sectional area of surge tank jointly determine the distributions of stability states.  相似文献   

3.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

4.
This paper adopts some alternative strategies to design a nonlinear controller for double electrostatically actuated microplates. The novel design is carried out to solve the singularity problem reported in many articles due to the use of the Taylor expansion to simplify the electrostatic force. The nonlinear governing partial differential equation is converted to the modal equation using the Galerkin method. Then, based on the Lyapunov stability criterion, a fuzzy backstepping controller facilitated by prescribed performance functions is applied to the non-affine system to extend the travel range beyond the pull-in region and capture the structural and nonstructural uncertainties that exist in the practical systems. The present work also aims to bring satisfactory transient and steady-state performance indices to the system. Moreover, unknown time-varying delays as the indispensable part of practical systems are considered in the proposed control scheme to suppress the delays occurring in the measurement of the states by constructing Lyapunov–Krasovskii function. The accuracy of the modal equation in both the static and dynamic analysis is verified through a meshless method as a direct solution of the partial differential equation. The proposed controller guarantees that all the closed-loop signals are semi-globally, uniformly ultimately bounded, and the error evolves within the decaying prescribed bounds. Finally, the proposed controller demonstrates its feasibility to extend the travel range within and beyond the pull-in range despite the unknown uncertainties and time-varying delays which exist in the system.  相似文献   

5.
This article presents a new strategy based on multistage fuzzy PID controller for damping power system stabilizer in multimachine environment using Honey Bee Mating Optimization (HBMO). The proposed technique is a new metaheuristic algorithm which is inspired by mating procedure of the honey bee. Actually, the mentioned algorithm is used recently in power systems which demonstrate the good reflex of this algorithm. Also, finding the parameters of PID controller in power system has direct effect for damping oscillation. Hence, to reduce the design effort and find a better fuzzy system control, the parameters of proposed controller is obtained by HBMO that leads to design controller with simple structure that is easy to implement. The effectiveness of the proposed technique is applied to single machine connected to infinite bus and IEEE 3–9 bus power system. The proposed technique is compared with other techniques through integral of the time multiplied absolute value of the error and figure of demerit. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–245, 2016  相似文献   

6.
This paper brings attention to a new nonlinear mathematical model of a hydro-turbine governing system with a surge tank. The nonlinear mathematical model, which is described by state-space equations, is composed of Francis turbine system, electrical generator system, conduit system and governor system. Furthermore, the nonlinear dynamical behaviors of the system with different parameters are studied exhaustively including bifurcation diagrams, time waveforms, phase orbits, Poincare maps, spectrograms and power spectrums. Fortunately, some interesting phenomenons are found from numerical simulation results. More important, all of the above analyses supply some theory bases for designing and running of a hydro-turbine governing system.  相似文献   

7.
Andreas Kugi  Daniel Daniel 《PAMM》2005,5(1):169-172
This contribution is devoted to the infinite-dimensional control design for a certain class of infinite-dimensional systems. As first example a piezoelectric cantilever with a tip mass is considered. The control objective is to provide two independently controllable degrees-of-freedom for the tip mass in form of the tip position and the tip angle. The control concept being proposed consists of an open-loop flatness-based tracking controller and a linear dynamic feedback controller in order to asymptotically stabilize the closed-loop error system. A similar concept is then applied to a second example, a gantry crane system with heavy chains and a payload. Thereby, the knowledge of the energy flows into and within the system is exploited to derive a stabilizing controller of the error system by means of the integrator backstepping method. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Passivity-based control has exclusively been pursued for dynamical systems possessing energetic state functions that are quadratic in the generalized velocities. This assumption does not apply to many dynamical systems, for instance in electromechanics, thus passivity-based control has not been established for these classes of systems. This contribution presents an augmented PD control scheme for such systems. To this end the system dynamics is represented in the event space considered as a Finsler space. It is shown that in this setting the skew symmetry property is retained. A passivity-based augmented PD controller is designed in the event space, and restricted to the configuration space giving rise to a passivity-base control law. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This article considers the robust regulation problem for a class of constrained linear switched systems with bounded additive disturbances. The proposed solution extends the existing robust tube based model predictive control (RTBMPC) strategy for non-switched linear systems to switched systems. RTBMPC utilizes nominal model predictions, together with tightened sets constraints, to obtain a control policy that guarantees robust stabilization of the dynamic systems in presence of bounded uncertainties. In this work, similar to RTBMPC for non-switched systems, a disturbance rejection proportional controller is used to ensure that the closed loop trajectories of the switched linear system are bounded in a tube centered on the nominal system trajectories. To account for the uncertainty related to all sub-systems, the gain of this controller is chosen to simultaneously stabilize all switching dynamics. The switched system RTBMPC requires an on-line solution of a Mixed Integer Program (MIP), which is computationally expensive. To reduce the complexity of the MIP, a sub-optimal design with respect to the previous formulation is also proposed that uses the notion of a pre-terminal set in addition to the usual terminal set to ensure stability. The RTBMPC design with the pre-terminal set aids in determining the trade-off between the complexity of the control algorithm with the performance of the closed-loop system while ensuring robust stability. Simulation examples, including a Three-tank benchmark case study, are presented to illustrate features of the proposed MPC.  相似文献   

10.
A nonlinear system for controlling flutter in an aeroelastic system is proposed. The dynamic model describes the plunge and pitch motion of a wing. Interacting nonlinear forces such as structural and aerodynamic forces cause destabilizing phenomena such as flutter and limit cycle oscillation on the wing. Aeroelastic models have a wing section with only a single trailing-edge control surface for suppressing limit cycle oscillation. When modeling a single control surface, the controller design can achieve trajectory control of either plunge displacement or pitch angle, but not both, and internal dynamics describe the residual motion in closed-loop systems. Internal dynamics of aeroelasticity depend on model parameters such as freestream velocity and spring constant. Since single control surfaces have limited effectiveness, this study used leading- and trailing-edge control surfaces to improve control of limit-cycle oscillation. Moreover, two control surfaces were used to provide sufficient flexibility to shape both the plunge and the pitch responses. In this study, high order sliding mode control (HOSMC) with backstepping design achieved system stability and eliminated limit cycle phenomenon. Compared to the conventional sliding mode control design, the proposed control law not only preserves system robustness, but also avoids chatter phenomenon. Simulation results show that the proposed controller effectively regulate the response to origin in state space even under saturated controller input.  相似文献   

11.
This paper considers the problem of passivity-based controller design for Hopfield neural networks. By making use of a convex representation of nonlinearities, a feedback control scheme based on passivity and Lyapunov theory is presented. A criterion for existence of the controller is given in terms of linear matrix inequality (LMI), which can be easily solved by a convex optimization problem. An example and its numerical simulation are given to show the effectiveness of the proposed method.  相似文献   

12.
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua’s chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system.  相似文献   

13.
Passivity-based control (PBC) is a very powerful design methodology for dynamic systems. In this paper, the stabilization of generalized Hamiltonian control systems with internally generated energy is considered using PBC. Sufficient conditions concerning the passivation of this kind of Hamiltonian control systems are given. The results are applied to power systems, including multimachine power systems with steam valve control and single machine infinite bus with superconducting magnetic energy storage. Simulations are employed to demonstrate the effectiveness of the proposed control methodology.  相似文献   

14.
针对一类线性离散系统,提出一种基于二维模型的非脆弱离散重复控制设计方法.通过独立地考虑重复控制系统的控制与学习行为,建立离散重复控制系统的二维模型. 在此基础上,针对重复控制器和反馈控制器具有不确定性的离散重复控制系统,给出了基于线性矩阵不等式的系统稳定性条件和重复控制律. 最后,数值仿真实例验证了所提方法的有效性.  相似文献   

15.
The state-delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state time-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on equilibrium properties of nonlinear control system with state time-delay is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.  相似文献   

16.
A P–D (Proportional plus Derivative) feedback controller is proposed for the control of chaotic dynamic systems. Using this feedback law the design requirement of command matching is satisfied independently of the perturbations of the initial conditions of the dynamic plant. The problem is solved for all nonlinear systems having independent inputs and independent performance variables. The controller is implemented without knowledge of the system’s initial conditions and thus it is independent of their perturbations.  相似文献   

17.
In many control engineering applications, it is impossible or expensive to measure all the states of the dynamical system and only the system output is available for controller design. In this study, a new dynamic output feedback control algorithm is proposed to stabilize the unstable periodic orbit of chaotic spinning disks with incomplete state information. The proposed control structure is based on the T‐S fuzzy systems. This investigation also introduces a new design procedure to satisfy a constraint on the T‐S fuzzy dynamic output feedback control signal. This procedure is independent of the exact value of initial states. Finally, computer simulations are accomplished to illustrate the performance of the proposed control algorithm. © 2015 Wiley Periodicals, Inc. Complexity 21: 148–159, 2016  相似文献   

18.
This paper designs the dynamic output-feedback controller of switched positive systems subject to switching faults using an improved adaptive event-triggering mechanism. An adaptive event-triggering condition is addressed in the form of 1-norm by virtue of the measurable outputs of distributed sensors and the corresponding error. An error-based closed-loop control system whose dynamic variable relies on a state observer is obtained. A multiple copositive Lyapunov function is constructed to deal with the positivity and stability of the systems. The matrix decomposition and linear programming approaches are used to design and compute the controller and observer gains. An improved average dwell time scheme is proposed to handle the switching faults. The contributions of this paper lie in that: (i) An adaptive event-triggering mechanism is established for switched positive systems, (ii) A framework on the fault of switching signal is constructed, and (iii) A dynamic distributed controller is proposed for the considered systems. Finally, two illustrative examples are given to verify the effectiveness of the obtained results.  相似文献   

19.
The dynamic soft variable structure control (VSC) of singular systems is discussed in this paper. The definition of soft VSC and the design of its controller modes are given. The stability of singular systems with the dynamic soft VSC is proposed. The dynamic soft variable structure controller is designed, and the concrete algorithm on the dynamic soft VSC is given. The dynamic soft VSC of singular systems which was developed for the purpose of intentionally precluding chattering, achieving high regulation rates and shortening settling times enhanced the dynamic quality of the systems. It is illustrated the feasibility and validity of the proposed strategy by a simulation example, and an outlook on its auspicious further development is presented.  相似文献   

20.
A novel approach to tackle passivity-related issues in the frequency domain for linear multiple-input multiple-output (MIMO) cross-coupled systems is given. The aim is to design passivity-based stabilising diagonal controllers within the framework of Individual Channel Analysis and Design (ICAD). Two main results are presented. First, the ICAD is reinterpreted in terms of the passivity-related properties of either the channels or the closed-loop system. The notion of practical passivity is introduced. Second, for linear MIMO systems, a novel frequency-domain passification procedure is proposed. This procedure is used in the design process of the diagonal controllers. Furthermore, an indicator of how far the system is from being passive is defined. This indicator is stated in terms of gain and phase margins, with the consequent statement of robustness. Such a passivity indicator has not been established so far, and for practical applications can be more useful than setting the passivity of the system. Classical frequency-domain control techniques based on Bode and Nyquist plots are used. The results are applied to a 2-input-2-output system modelling an induction motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号