首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— The ability of UV-irradiation (254 nm) to induce formation of RNA-protein crosslinks in tobacco mosaic virus (TMV) particles have been studied by Cs2SO4 density gradient centrifugation, analytical centrifugation, nitrocellulose filter binding and two-dimensional peptide mapping. RNA-protein crosslinks were found to be formed on UV-irradiation of TMV, but the parallel process of UV-induced RNA chain breakage complicated their quantitation. Using speciall devised equations, the quantum yield of RNA-protein crosslink formation was found to be 0.65 × 10−5 and that of RNA chain break formation 0.95 × 10−5.  相似文献   

2.
The low-intensity steady-state (254 nm), microsecond flash and nanosecond (266 nm) laser photolysis of some guanine (Gua) derivatives in aqueous solution were studied. A photodestruction yield between 10(-3) and 10(-2) at a base concentration of 75 microM was determined for 254 nm irradiation at room temperature using high-performance liquid chromatography. This yield decreases with increasing purine concentration. For a similar concentration of the purine bases (2 +/- 1) x 10(-5) M, the yield increases as follows: Gua approximately 9-ethylguanine < deoxyguanosine approximately guanosine (Guo) < guanosine 5'-monophosphate. At concentrations higher than 2 x 10(-4) M the Gua derivatives' photodestruction yield seems to converge to a limiting value of the order of 10(-4). This behavior is explained in terms of self-quenching and aggregation effects which deactivate the excited states of the bases. The yields of electron photoejection have been determined in the nanosecond laser photolysis (0.083) and in the low-intensity steady-state (5.8 x 10(-3)) for Guo. Competition experiments using electron scavengers suggest that the electron adducts of the bases are one of the principal species participating in the photodestruction mechanism of these monomeric Gua. Close to 75% of the total destruction yield has contributions from initial reactions of the photojected electron at neutral pH. The quantum yield of photodestruction of Guo increases when the pH is increased as follows: 4.7 x 10(-3) (pH 1.1), 6.5 x 10(-3) (pH 2.9), 7.7 x 10(-3) (pH 7.5) and 8.1 x 10(-3) (pH 11.9). This dependence on pH and the electron scavenger experiments provide further evidence for the radical anion or its protonated form as one of the principal species involved in the photodestruction of the bases at the different pH. Under oxygen saturated conditions a 22% increase in the destruction yield is observed for Guo. However, for the dinucleotides adenylyl (3'-->5')-guanosine and thymidylyl (3'-->5')2'-deoxyguanosine, the participation of the electron is 41 and 36%, respectively, suggesting that going into a more DNA or RNA-like structure, the participation of the electron adducts species in the photodamage of DNA and RNA decreases. A mechanism of photodestruction for the Gua derivatives is proposed which takes into account these findings.  相似文献   

3.
A spectrum of oxidative lesions was observed in a bacteriophage-based model system that is very sensitive to the photodynamic activity of selected dyes. When suspensions of the intact bacteriophage Qβ were exposed to methylene blue plus light (MB+L), inactivating events, or "hits" occurred that were oxygen-dependent and that were associated with the formation of several specific lesions: (1) carbonyl moieties on proteins, (2) 8-oxo-7,8-dihydroguanine (8-oxoGua), and (3) single-strand breaks (ssb) in the RNA genome and (4) RNA-protein crosslinks. Formation of carbonyl groups associated with protein in the Qβ phage preparation correlated positively with photoinactivation of the phage with increasing doses of either of the sensitizers MB or rose bengal. Strand breaks in the Qβ genomic RNA were observable at high MB concentrations but appeared not to be significant at the lower concentrations of MB, as full-length Qβ RNA was observable well beyond the 99% inactivation point in MB dosage. It was shown that the number of 8-oxoGua lesions were unlikely to be sufficient to account for the number of lethal events. Following exposure to MB+L, crosslink formation between Qβ RNA and protein was observed by virtue of the location of RNA at the interface of phenol-aqueous extractions of phage suspensions. A significant increase over background of RNA-protein complexes (including full-length Qβ RNA) was observed at the lowest concentration of MB tested (0.5 μ M ), which corresponded roughly to an average of 2 lethal hits per phage or approximately 13% survival compared to the zero MB control (100% survival). Due to its close correlation with Qβ inactivation and its expected lethality, RNA-protein crosslink formation may be important as an inactivating lesion in bacteriophage Qβ following MB+L exposure.  相似文献   

4.
PhotoDSC has been applied to follow the global kinetics of chain scissions resulting from the UV light irradiation or from the thermal degradation of a high molecular weight PEO (4 x 10(6) g x mol(-1)). Infrared spectroscopy, XRD measurements and rheology experiments were performed to evidence the occurrence of chain scissions. Melting energy was used as a tool to quantify the extent of the degradation. It was found that the chain scissions reaction follows a first-order kinetic law for both photo and thermal degradation. The activation energies were found identical in both cases (41 kJ x mol(-1)), whereas the degradation rate was higher in the case of UV irradiation than in the case of thermoageing.  相似文献   

5.
Wavelength-selective photo-regulation by multiple chromophores responding to different wavelengths can expand the variation of photo-manipulating systems. Herein, we report the orthogonal photo-regulation of duplex formation between serinol nucleic acid (SNA) and RNA using light-induced crosslinking reactions mediated by a new photo-reactive nucleobase 8-naphthylvinyladenine (NVA) and previously described 8-pyrenylvinyladenine (PVA). An intrastrand crosslink was induced in an SNA strand containing two adjacent NVA residues by irradiation with 340–405 nm light; the crosslink was reversed by irradiation with ≤300 nm light. In an SNA strand with adjacent NVA and PVA residues, an intrastrand crosslink resulted from irradiation with 405–465 nm light that was reversed by irradiation with ≤340 nm light. Intrastrand photo-crosslinking caused severe destabilization of an SNA/RNA duplex, resulting in dissociation to single strands. Cycloreversion resulted in duplex formation. With these NVA/NVA and NVA/PVA photo-switches, four hybridization states of two SNA/RNA duplexes could be orthogonally photo-controlled by irradiation with a suitable wavelength of light.  相似文献   

6.
Flavonoids are an interesting group of natural polyphenolic compounds that exhibit extensive bioactivities such as scavenging free radical, antitumor and antiproliferative effects. The anticancer and antiviral effects of these natural products are attributed to their potential biomedical applications. While flavonoids complexation with DNA is known, their bindings to RNA are not fully investigated. This study was designed to examine the interactions of three flavonoids; morin (Mor), apigenin (Api) and naringin (Nar) with yeast RNA in aqueous solution at physiological conditions, using constant RNA concentration (6.25 mM) and various pigment/RNA (phosphate) ratios of 1/120 to 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constant and the stability of RNA in flavonoid-RNA complexes in aqueous solution. Spectroscopic evidence showed major binding of flavonoids to RNA with overall binding constants of K(morin) = 9.150 x 10(3) M(-1), K(apigenin)=4.967 x 10(4) M(-1), and K(naringin)=1.144 x 10(4) M(-1). The affinity of flavonoid-RNA binding is in the order of apigenin>naringin>morin. No biopolymer secondary structural changes were observed upon flavonoid interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   

7.
Singlet-oxygen generation from A2E   总被引:2,自引:0,他引:2  
Singlet-oxygen generation was measured in solutions containing equilibrium mixtures of the retinal lipofuscins, 2-[2, 6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 1E,3E,5E,7Eoctatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) and double bond isomer of A2E (iso-A2E), using steady-state irradiation and using cholesterol as a singlet-oxygen trap. The amount of singlet oxygen generated by equilibrium mixtures of A2E and iso-A2E was compared with that generated by tetraphenylporphine (TPP) under the same conditions. Studies were carried out in ethanol-d6, acetone-d6, 80% cyclohexane-d(12)-20% acetone-d6 (vol/vol) and hexafluorobenzene. Using 420 nm irradiation and assuming a singlet-oxygen quantum yield of 0.60 +/- 0.12 for TPP, the singlet-oxygen quantum yields were 0.8 +/- 0.3 x 10(-3), 1.2 +/- 0.4 x 10(-3), 2 +/- 1 x 10(-3) and 4 + 1 x 10(-3), respectively. In acetone-d6, the quantum yields were smaller at longer wavelengths, with values of 0.3 +/- 0.1 x 10(-3) and 0.4 +/- 0.2 x 10(-3) at 461 and 493 nm, respectively. Singlet-oxygen generation was greatest in solvents with the lowest dielectric constants. In view of the relatively small quantum yields, the contribution of singlet-oxygen generation to the phototoxic properties of A2E and of iso-A2E will require further study.  相似文献   

8.
The effects of usual low-intensity continuous (lambda = 254 nm, I = 10 W/m2) UV radiation and high-intensity laser nanosecond (lambda = 266 nm, tau p = 10 ns, I = 10(9) W/m2) or picosecond (lambda = 266 nm, tau p = 23 ps, I = 10(12) W/m2) UV radiation on Venezuelan equine encephalomyelitis virus (a member of the Togaviridae family) were compared. The quantum yields of infectivity inactivation, pyrimidine dimer formation and RNA-protein crosslinking were determined.  相似文献   

9.
The photoreduction of oxidized bovine heart cytochrome c oxidase (CcO) by visible and UV radiation was investigated in the absence and presence of external reagents. In the former case, the quantum yields for direct photoreduction of heme A (heme a + heme a(3)) were 2.6 +/- 0.5 x 10(-3), 4 +/- 1 x 10(-4), and 4 +/- 2 x 10(-6) with pulsed laser irradiation at 266, 355 and 532 nm, respectively. Within experimental uncertainty, the quantum yields did not depend on pulse energy, implying that the mechanism is monophotonic. Irradiation with 355 nm light resulted in spectral changes similar to those produced independently by reduction with dithionite, whereby the low-spin heme a and Cu(A) are reduced first. Extended illumination at 355 and 532 nm yielded substantial amounts of reduced heme a(3). Heme decomposition was noted with 266 nm light. In the presence of formate and cyanide ions, which bind at the binuclear heme a(3)/copper center in CcO, irradiation at 355 nm caused selective reduction of only the low-spin heme a and Cu(A). The addition of ferrioxalate ion dramatically increased the efficiency of cytochrome c oxidase photoreduction. The quantum efficiency for heme A reduction was found to be near unity, significantly greater than for other known methods of photoreduction. The active reductant is most likely ferrous iron, and its reduction of the enzyme is thermodynamically driven by the reformation of ferrioxalate in the presence of excess oxalate ion. Other metalloenzymes with redox potentials similar to those of cytochrome c oxidase should be amenable to indirect photoreduction by this method.  相似文献   

10.
Synthesis and photoisomerization of dithienylethene-bridged diporphyrins   总被引:1,自引:0,他引:1  
Dithienylethene-bridged diporphyrins 1-6 were prepared as photochemical switching molecules. Porphyrin and dithienylethene are directly linked in 1, and linked, respectively, through a 1,4-phenylene spacer in 2, through a 4-ethynylphenylene spacer in 3, and through a di-4-phenylethynylene spacer in 4, while meso-ethynylated porphyrin and dithienylethene are directly connected in 5 and linked through a 1,4-phenylene spacer in 6. Compounds 1, 2, and 5 do not undergo any photochemical isomerization, probably due to efficient quenching of the excited dithienylethene by the attached porphyrin moiety via intramolecular energy transfer. Compounds 4 and 6 undergo open-to-closed and closed-to-open photoisomerizations in quantum yields of 4.3 x 10(-)(2) and 1.8 x 10(-)(3), and 2.6 x 10(-)(3) and 7.5 x 10(-)(4), respectively, by irradiation with 313 and 625 nm light, which are considerably smaller than quantum yields of 0.52 and 3.8 x 10(-)(3) for reference dithienylethene molecule 7. The fluorescence of 4 was regulated in a reversible manner by the photoisomerization of the dithienylethene moiety. In addition, the absorption properties of the porphyrin in 6 changed in response to the photochromic reaction of the dithienylethene bridge.  相似文献   

11.
The photochemical reactions of cytosine (Cyt) and uracil (Ura) with ethylamine, an analog of the side chain of the amino acid lysine, have been studied. After irradiation of Cyt in aqueous ethylamine at lambda = 254 nm, N-(N'-ethylcarbamoyl)-3-aminoacrylamidine (Ia) and N-(N'-ethylcarbamoyl)-3-ethylaminoacrylamidine (Ib) were isolated as products, while irradiation of Ura gave N-(N'-ethylcarbamoyl)-3-aminoacrylamide (IIa) and N-(N'-ethylcarbamoyl)-3-ethylaminoacrylamide (IIb) as products. Studies in which Ia and IIa were incubated with ethylamine at various pH values indicate that Ib and IIb are secondary products produced via thermal reactions of Ia and IIa with ethylamine. Heating of Ia and Ib leads to ring closure with the resultant formation of 1-ethylcytosine; small amounts of 1-ethyluracil are also produced. Heating of IIa and IIb produces 1-ethyluracil as the sole product. Spectroscopic properties were determined for each of these opened ring products, as well as for N-(N'-ethylcarbamoyl)-3-amino-2-methylacrylamidine (III) and N-(N'-ethylcarbamoyl)-3-amino-2-methylacrylamide (IV). Quantum yield measurements showed that Ia was formed with a phi of 1.6 x 10(-4) at pH 9.8, while phi for formation of IIa was 7.2 x 10(-4) at pH 11.5. A profile of the relative quantum yield for formation of Ia, determined as a function of pH, showed that the maximum quantum yield occurs at around pH 9.5; the analogous profile for IIa shows a maximum quantum yield at pH 11.3 and above. Acetone sensitization does not produce Ia in the Cyt-ethylamine system, which indicates that the known triplet state of Cyt is not involved in reactions leading to this opened ring product.  相似文献   

12.
Monkey kidney cells (CV-1) grown for 4 h in the presence of 0.1 m M 4-thiouridine (s4Urd) incorporate this photoactivable uridine analog in their RNA. A minor, 5–8%, thiolated RNA fraction can be isolated from bulk RNA by affinity chromatography. This RNA fraction contains 1.5–2.5 s4Urd residues per 100 nucleotides and exhibits a broad chain length distribution ranging from 700 to 7000 nucleotides. It is essentially of nuclear origin and amounts to 30% of the RNA synthesized during exposure of cells to s4Urd. Under the same s4Urd labeling conditions, no thiolated pyrimidine residues have been detected in DNA.
Irradiation with 365 nm light (45 kJ/m2) of the cells immediately after s4Urd exposure triggers long-term inhibition of DNA, RNA and protein synthesis accompanied by a linear decline (50% in 2 days) in the total cell mass of cultured cells. In contrast, exposure to s4Urd alone results in moderate but reversible inhibitory effects. The available data suggest that s4Urd-induced photolesions in newly synthesized RNA such as RNA-RNA cross-links as well as RNA-protein bridges are directly involved in impairment of essential cellular functions.  相似文献   

13.
The synthesis and characterization of new analogs of the laser dye PM567 (4,4-difluoro-1,3,5,7,8-pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene) with the 8-position substituted by a linear chain with n methylenes (n = 1, 3, 5, 10 or 15) tethered with an acetoxy or methacryloyloxy group (PnAc and PnMA, respectively) is described. The monomeric dyes PnMA have been successfully copolymerized with methyl methacrylate (MMA), yielding linear copolymers of high optical quality where the covalently bonded chromophore is separated from the polymeric main chain by a spacer of variable length. The photostability of the solid polymeric materials under UV (310 nm) irradiation (method ASTM G 53-77) has been compared with those of the model dyes PnAc and PM567 as solid solutions in poly-MMA (PnAc-PMMA and PM567-PMMA, respectively). In all the cases, the chromophore bound to the polymer is more photostable than that simply dissolved in the same polymer, with photodegradation quantum yields in the range 2.3 x 10(-5) to 4.8 x 10(-5), which was interpreted as due to additional modes for the dissipation of the absorbed energy along the polymeric chain. In both polymer solutions and copolymers, the length of the polymethylene chain has low or null influence on the photostability. In ethanol solution, PnAc model dyes with polymethylene chains with three or more methylene groups show about the same photostability; this is of an order of magnitude higher than that of the parent dyes P1Ac and PM567 in the same solvent.  相似文献   

14.
The photodissociation of p-xylene at 266 nm in n-heptane and acetonitrile has been studied with use of nanosecond fluorescence and absorption spectroscopy. The p-methylbenzyl radical was identified in n-heptane and acetonitrile by its fluorescence, which was induced by excitation at 308 nm. The p-xylene radical cation was observed in acetonitrile by its absorption. In n-heptane, the decay rate of the S(1) state of p-xylene ((3.2 +/- 0.2) x 10(7) s(-1)) is equal to the growth rate of the p-methylbenzyl radical ((2.7 +/- 0.4) x 10(7) s(-1)), showing that the molecule dissociates via the S(1) state into the radical by C-H bond homolysis (quantum efficiency approximately 5.0 x 10(-3)). In acetonitrile, the formation of the p-xylene radical cation requires two 266 nm photons, and the decay rate of the radical cation ((1.6 +/- 0.2) x 10(6) s(-1)) equals the growth rate of the p-methylbenzyl radical ((2.0 +/- 0.2) x 10(6) s(-1)). This shows that the radical cation dissociates into the radical by deprotonation (quantum efficiency approximately 8.9 x 10(-2)).  相似文献   

15.
Abstract— MDV-1 RNA is a 218 nucleotide variant of bacteriophage Qβ RNA. Qβ replicase catalyzes the formation of a strand complementary to a single-stranded (SS) MDV-I template. Upon phenol extraction, the template and complementary strands become double-stranded (DS). Polyacrylamide gel electrophoresis of the products of this reaction revealed SS RNA, DS RNA, and discrete intermediate bands. UV irradiation of the template caused a decrease in DS RNA production which followed single-hit kinetics with a quantum yield of 1.6 × 10--3. Concomitant with this diminished DS RNA production were increases in SS RNA and intermediate sized RNA. The latter was shown to consist of a full sized SS template annealed to a partially completed nascent strand. Upon electrophoresis, these partially completed duplexes migrated in the same positions as those found in the analysis of unirradiated template, suggesting that this RNA contains replication obstruction areas in which UV lesions cause an increase in replication inhibition.  相似文献   

16.
The paranemic crossover (PX) is a motif for assembling two nucleic acid molecules using Watson-Crick (WC) basepairing without unfolding preformed secondary structure in the individual molecules. Once formed, the paranemic assembly motif comprises adjacent parallel double helices that crossover at every possible point over the length of the motif. The interaction is reversible as it does not require denaturation of basepairs internal to each interacting molecular unit. Paranemic assembly has been demonstrated for DNA but not for RNA and only for motifs with four or more crossover points and lengths of five or more helical half-turns. Here we report the design of RNA molecules that paranemically assemble with the minimum number of two crossovers spanning the major groove to form paranemic motifs with a length of three half turns (3HT). Dissociation constants (Kd's) were measured for a series of molecules in which the number of basepairs between the crossover points was varied from five to eight basepairs. The paranemic 3HT complex with six basepairs (3HT_6M) was found to be the most stable with Kd = 1 x 10-8 M. The half-time for kinetic exchange of the 3HT_6M complex was determined to be approximately 100 min, from which we calculated association and dissociation rate constants ka = 5.11 x 103 M-1s-1 and kd = 5.11 x 10-5 s-1. RNA paranemic assembly of 3HT and 5HT complexes is blocked by single-base substitutions that disrupt individual intermolecular Watson-Crick basepairs and is restored by compensatory substitutions that restore those basepairs. The 3HT motif appears suitable for specific, programmable, and reversible tecto-RNA self-assembly for constructing artificial RNA molecular machines.  相似文献   

17.
The second-order scattering technique (SOS), using a common spectrofluorometer, was first developed as a sensitive instrumental analysis method for determination of the ribonucleic acid (RNA). The results indicate that RNA had a weak SOS peak and the Tb(III) ion can greatly enhance the SOS intensity of RNA with the maximum peak located at 612.0 nm. Mechanism study shows that the peak results from the long-range assembly of Tb(III) ion on the molecular surface of RNA. At the pH 7.50 and with cetyltrimethylammonium bromide (CTMAB) (6.0 x 10(-5)M), the enhanced SOS intensity was in proportion to the concentration of RNA in the range of 2.0 x 10(-8) to 2.0 x 10(-5)g/ml. The detection limit was 1.96 ng/ml. The relative standard deviation (five replicates) was within +/-5% in the linear range. This method has been used satisfactorily for the determination of both synthetic and real samples. In comparison with most other methods for the determination of ribonucleic acids, this method is more sensitive.  相似文献   

18.
Abstract— Biologically active f2-RNA, Obtained from bacteriophage f2, was inactivated by ultraviolet (u.v) light (2537 Å) with a quantum yield of 3.3 ± 0.3 times 10-3 when assayed in the dark with protoplasts of an F- strain of E. coli k12. Assay under “black light” gave a quantum yield of 2.7 ± 0.5 times 10-3 which was just enough lower to suggest that 17 per cent photorecovery of the u.v. lesions has taken place. Intact phage f2 was inactivated by u.v. radiation with a quantum yield of 0.7 ± 0.12 times 10-3, Thus the whole phage is much less sensitive than the free RNA. No evidence of photorecovery was found in u.v.-irradiated RNA phage 7S assayed in its host Pseudomonas aeruginosa.  相似文献   

19.
[reaction: see text] Iminooxirane 4 has been generated by the reaction of phenylchlorocarbene (2) with phenyl isocyanate (3) and studied by nanosecond time-resolved infrared spectroscopy. Iminooxirane 4 (1830 cm(-1)) isomerizes to alpha-lactam 5 (1880 cm(-1)) at an observed rate of 3 x 10(4) s(-1). Peak assignments were confirmed by a combination of B3LYP calculations and isotopic labeling. An acyclic transition state was found computationally for the isomerization reaction.  相似文献   

20.
Methylene blue (MB) is being used as a sensitizer for the photodynamic inactivation of viral contaminants, including the human immunodeficiency virus, in blood and blood components used in medical treatment. We recently showed that oxygen-dependent photodynamic inactivation of the RNA bacteriophage Q beta with MB plus light (MB + L) is associated with the formation of 8-oxo-7,8-dihydroguanine, protein carbonyls, RNA-protein crosslinkages and minor amounts of RNA strand breaks. We report herein, with the use of infectious RNA assays, that the lethal lesions in Q beta phage following MB + L exposure can be accounted for, and thereby most likely reside in, the RNA component of the phage but that the protein component of the virion contributes to the inactivation. The formation of RNA-protein crosslinkages as the primary inactivating type of lesion is put forth as the most probable model of the inactivation mechanism due to the sensitivity with which RNA-protein crosslinks are formed in response to MB + L exposure and the expectation of the powerful inactivating power of this type of lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号