首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A new relation for the prediction of the transverse shear modulus in unidirectional fiber composites has been derived. The theoretical results of this relationship are in better agreement with the experiments than those of other relations, existing in the literature. The discrepancies, which are observed among the theoretical predictions and the experimental values, are explained by the consideration of the boundary layers existing between the matrix and the fibers of the composite. A new model, which includes the intermediate phase between the matrix and the fiber, called the mesophase, is considered in order to take into account the above-mentioned layers.  相似文献   

2.
High Impact Polystyrene (HIPS) consists of a glassy polystyrene matrix and a rubber-like particle phase (gel phase). The extent of grafting of the gel phase is known to be an important parameter in the fracture toughness of the material. [1]. A simple quantitative model is developed in this paper to determine the extent of gel-particle grafting from the observed shifts in the glass transition temperature of the gel phase of three commercial types of HIPS.Although the increase in interfacial [2] and gel-particle grafting accounts for an increase in the energy absorbed before fracture at low strain rates, above a certain amount of grafting the material becomes embrittled at high strain rates. The adhesion factor A of mesophase models [3, 19], considered between the main phases of the material, was found to correlate with the observed impact behaviour.  相似文献   

3.
Isothermal melt, fiber-spinning was recently analyzed by means of a nonlinear, integral, constitutive equation that incorporates shear history effects, spectrum of relaxation times, shear-thinning, and extension thinning or thickening when either the drawing force or the draw ratio is specified. The predictions agreed with experimental data on spinning of polystyrene, low-density polyethylene, and polypropylene melts. The predicted apparent elongational viscosity along the threadline (which, as shown in this work, must be identical to that measured experimentally by fiber spinning type of elongational rheometers) is compared with the true elongational viscosity predicted by the same constitutive equation under well-defined experimental conditions of constant extension rate, independent of any strain history. It is concluded that the apparent elongational viscosity, as measured by fiber-spinning, approaches the true elongational viscosity at low Weissenberg numbers (defined as the product of the liquid's relaxation time multiplied by the extension rate). At moderate Weissenberg numbers, the two viscosities may differ by an order of magnitude and their difference grows even larger at high Weissenberg numbers.  相似文献   

4.
After a short review of theoretical background on mesophase formation in polymer solutions, this paper describes the liquid crystal phase transition and the corresponding rheological properties for aqueous solutions of a high-molecularweight xanthan sample (M w 1.8 106). The formation of mesophases has been studied using polarizing microscopy and viscometry. The effects of the presence of salts, bacteria cells and proteins have been investigated. The variations in the viscosity, due to mesophase formation, are in qualitative agreement with the predictions of Matheson's theory, but the onset of the ordered phase occurs at very low polymer concentrations and the diphasic domain is much broader than predicted by thermodynamic models. These characteristics of the phase transition are related to the very high molecular weight of the sample studied and can be explained mainly by the effects of cooperative interactions between xanthan chains and of chain flexibility reducing translational entropy.  相似文献   

5.
Dynamic mechanical spectra of various composites of high density polyethylene (PE), ethylene propylene diene rubber (EPDM), and calcium carbonate were obtained at 190°C with a parallel plate instrument. Interfacial effects were found to have a significant influence on the dynamic mechanical behavior of these composites.Composites of calcium carbonate in PE displayed prominent particle—particle interaction effects. This resulted in a greatly enhanced dynamic shear modulusG d due to the filler addition. Treatment of the calcium carbonate with gamma-aminopropyltriethoxysilane (-APS) or gamma-methacryloxypropyltrimethoxysilane (-MPS) significantly reduced the particle—particle interactions. Solution deposition of EPDM or EPDM grafted with maleic anhydride (EPDM-MA) on the calcium carbonate, before incorporation into a PE composite, also had a significant effect on the composite properties. Comparison of data from composites treated with EPDM vs. EPDM-MA suggested the presence of an interaction between the calcium carbonate surface and the maleic anhydride modification. This conclusion was further supported by solid state proton NMR relaxation model experiments which showed significant immobilization of the EPDM-MA chains on the filler surface. The treatment of calcium carbonate with-APS or-MPS before incorporation into multicomponent polyethylene-rubber-filler composites also had a significant influence on the dynamic mechanical properties of the resultant composites. There is evidence for a reaction between-APS and EPDM-MA during processing on the roll mill.  相似文献   

6.
The thermal expansion coefficient of particle-reinforced polymers was evaluated using a theoretical model which takes into account the adhesion efficiency between the inclusions and the matrix — an important factor affecting the thermomechanical properties of a composite. To measure the adhesion efficiency a boundary interphase, i.e. a layer between the matrix and the fillers having a structure and properties different from those of the constituent phases, was considered. This layer is assumed to have varying properties.To obtain information concerning the properties and extent of the interphase, an experimental study of the thermal behaviour of aluminium-epoxy composites was undertaken. Differential Scanning Calorimetry (DSC) measurements were performed to evaluate heat capacity with respect to temperature. In addition, the effects of different factors, such as heating rate and filler concentration on the glass transition temperature of the composite, were examined. The sudden changes in heat capacity values in the glass transition region were used to estimate the extent of the boundary interphase according to an existing theory.Finally, the values of the thermal expansion coefficient, predicted by this model, were compared with theoretical results obtained by other authors and with experimental results.  相似文献   

7.
Model composites of spherical glass particles dispersed in a matrix of high density polyethylene were prepared both with and without interfacial modification by an azidofunctional trialkoxysilane. Dynamic mechanical measurements of the composites in the melt state were recorded. The unmodified composites behave as theoretically predicted and the effect of particle—particle interaction at high volume fractions can be measured. The composites with a modified interfacial region have greater shear moduli due to the effect of a region surrounding the particle modified by the silane. The material in this region is largely bound to the glass surface and was examined by Fourier transform infrared spectroscopy after extraction of the bulk matrix. Theoretical calculations are shown to be useful in calculating the mechanical properties and volume fraction of the interfacial region.  相似文献   

8.
The effect of fiber arrangement on transverse tensile failure in unidirectional carbon fiber reinforced composites with a strong fiber-matrix interface was studied using a unit-cell model that includes a continuum damage mechanics model. The simulated results indicated that tensile strength is lower when neighboring fibers are arrayed parallel to the loading direction than with other fiber arrangements. A shear band occurs between neighboring fibers, and the damage in the matrix propagates around the shear band when the interfacial normal stress (INS) is sufficiently high. Moreover, based on the observation of Hobbiebrunken et al., we reproduced the damage process in actual composites with a nonuniform fiber arrangement. The simulated results clarified that the region where neighboring fibers are arrayed parallel to the loading direction becomes the origin of the transverse failure in the composites. The cracking sites observed in the simulation are consistent with experimental results. Therefore, the matrix damage in the region where the fiber is arrayed parallel to the loading direction is a key factor in understanding transverse failure in unidirectional carbon fiber reinforced composites with a strong fiber/matrix interface.  相似文献   

9.
Using a power-law ansatz for the temperature dependence of the shear modulus on the level of internal variables, the thermorheological behavior is modeled for viscoelastic fluids of a special group of rheological constitutive equations (rate-type models). The model parameter introduced characterizes thermoelastic contributions. The relation between the model parameter and the physical quantities appearing in deformation processes is discussed. Based on the chosen temperature dependence of the shear modulus, thermodynamically consistent equations like the nonlinear rheological constitutive equation and the temperature equation are derived. The special cases of entirely entropy and energy elastic fluids are also considered. The thermorheological behavior (exo-, - or endothermal processes) of a viscoelastic fluid in a stress-growth experiment followed by relaxation is analyzed with respect to the model parameter.  相似文献   

10.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

11.
A model to relate the thermal conductivity tensor to the deformation of an amorphous polymeric material above the glass transition temperature is presented. The basis of the model is formed by the transient network theory for polymer melts. With this theory it is possible to calculate the average orientation of the macromolecular segments as a function of the history of the deformation. Combined with an expression which relates the thermal conductivity to the orientation of the molecules, this provides us with the information needed to calculate the heat conduction tensor. Despite the fact that the simplest possible network model is chosen, there is good agreement with the sparse, experimental results.  相似文献   

12.
Linear viscoelastic behavior of narrow molecular weight distribution 1,4 polybutadiene samples with molecular weights between 42500 and 779000 has been correlated with molecular structure using a simple modification of the Doi-Edwards theory of reptation. The entire GPC curve is required for the calculations of viscoelastic behavior.The plateau modulus obtained from the experimental data is comparable to literature values, while the equilibrium compliance (which is indicative of polydispersity) is greater than values reported in the literature for nearly monodisperse polybutadienes. Reasonable agreement between theory and experiment is obtained over the entire molecular weight range. The agreement between theory and experiment using the GPC curve is better than that obtained by assuming the polymer to be monodisperse or by using the Doi fluctuation model. The model appears to break down for a more polydisperse sample . This study indicates that it may be possible to use the Doi-Edwards theory to explain the viscoelastic behavior of narrow MWD polybutadienes without introducing any new concepts into the theory (fluctuations, constraints release, etc.).  相似文献   

13.
A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present model is shown. The dilute, self-consistent, differential and Mori–Tanaka methods are also extended to consider randomness in fiber section orientation in a statistical sense. A full comparison is made between various micromechanics methods and with the Hashin and Shtrikman’s bounds. The present method provides convergent and reasonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.  相似文献   

14.
Finite difference solutions have been obtained by the perturbation method to investigate the influence of shear thinning and elasticity on the flow around an inclined circular cylinder of finite length in a uniform flow. In this numerical analysis a generalized upper-convected Maxwell model, in which the viscosity changes according to the Cross model, has been used.The local flow over the cylinder is only slightly deflected. However, in the wake flow behind the cylinder the particle path is remarkably influenced by the axial flow and rapidly flows up parallel to the cylinder's axis. Then it gradually rejoins direction of the incoming flow. It is found that viscoelastic fluids are prone to flow axially in the vicinity of the cylinder. The numerical predictions generally agree with the flow visualization results.The numerical solutions also demonstrate that elasticity has a strong effect on the velocity profile especially around both ends of the cylinder; elasticity increases the asymmetric profiles of both circumferential velocity and axial velocity with respect to equal to 90° and decreases a difference in the circumferential velocity between the windward end and the leeward end.For non-Newtonian fluids, the length of the wake flow is influenced by not only the Reynolds number but also the cylinder diameter and it is larger for the cylinder with the smaller diameter at the same Reynolds number.Partly presented at the 9th Australasian Fluid Mechanics Conference, University of Auckland, New Zealand, 8–12 December, 1986  相似文献   

15.
Moisture absorption in natural fiber reinforced composites causes remarkable degradation of mechanical properties. A nonlinear constitutive model is proposed to study the effect of the water uptake on the mechanical properties of unidirectional natural fiber reinforced composites. Accompanying the water absorption in the composites, there are several irreversible thermodynamic processes such as fiber degradation and interface damage. The energy dissipation induced by these processes is described by an internal variable, and two degradation parameters representing interface damage and fiber degradation are introduced to reflect the modulus reduction of the composite. Particularly, the model is used to derive the evolution of elastic moduli influenced by the moisture absorption. The predictions from the present model show a good agreement with experiment results of sisal fiber unidirectional reinforced composites.  相似文献   

16.
17.
This three-part paper focuses on the effect of fiber architecture (i.e. shape and distribution) on the elastic and inelastic response of unidirectionally reinforced metal matrix composites (MMCs). The first part provides an annotated survey of the literature; it is presented as an historical perspective dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix composites and MMCs. A summary of the state of teh art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of MMCs. This micromechanics model, referred to as the generalized method of cells (GMC), can predict the overall inelastic behavior of unidirectional, multiphase composites, given the properties of the constituents. The model is also general enough to predict the response of unidirectional composites that are reinforced by either continuous or discontinuous fibers, with different inclusion shapes and spatial arrangements, in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments on this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third part provides qualitative results generated by using GMC for a representative titanium matrix composite system, SCS-6/TIMETAL 21S. The results presented correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep behavior of MMCs, with both strong and weak fiber/matrix interfacial bonds. Fiber arrangements included square, square-diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes were circular, square, and cross-shaped cross-sections. The effect of fiber volume fraction on the stress-strain response is also discussed, as is the thus-far poorly documented strain rate sensitivity effect. In addition to the well-documented features of the architecture-dependent behavior of continuously reinforced two-phase MMCs, new results are presented about continuous multiphase internal architectures. Specifically, the stress-strain and creep responses of composites with different size fibers and different internal arrangements and bond strengths are investigated; the aim was to determine the feasibility of using this approach to enhance the transverse toughness and creep resistance of titanium matrix composites (TMCs).  相似文献   

18.
The non-affine deformation of macromolecules and the slippage function are discussed. In case of polymer solutions with moderate concentration the slippage function is determined by means of the Cox-Merz rule. The non-linear viscoelasticity of these solutions is described with the aid of the Rouse-Zimm model with slippage function. The theoretical predictions show good agreement with published experimental data.  相似文献   

19.
The effects of solvent environment on the behaviour of a high molecular weight polyisobutylene dissolved in kerosene and various grades of poly-1-butene solvent mixtures are investigated. The dependence of various molecular parameters such as zero-shear viscosity, intrinsic viscosity, specific viscosity, relaxation time and molecular expansion factor, on the polymer concentration, type of solvent and solvent viscosity is studied in the vicinity of dilute and semidilute regions (near the critical concentrationc *). The dependence of these parameters on solvent environment follows qualitatively Zimm's molecular model. The dependence on the polymer concentration deviates from this dilute solution theory. The effects of temperature on the zero-shear viscosity and the Maxwell relaxation time are also presented for two PIB solutions.  相似文献   

20.
The time-dependent shear stress and first normal stress difference were measured for a polystyrene solution for start-up and cessation-flow experiments over a relatively wide range of shear rate. Consistency tests for the K-BKZ model were applied to the data, and it was concluded that the K-BKZ equation generally does not satisfactorily describe the start-up and cessation data. Modified consistency tests were developed using a strain-coupling constitutive equation, and the evidence suggests that most of the differences between the predictions of the K-BKZ theory and experiment can be explained by including a strain-coupling effect in the rheological constitutive equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号