首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

2.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

3.
Single crystals of new quaternary compounds Sr8Cu3In4N5 and Sr0.53Ba0.47CuN were prepared, respectively, from a Sr–Cu–In–Na melt under 7 MPa of N2 and from a Sr–Ba–Cu–In–Na melt under 0.5 MPa of N2 by slow cooling from 1023 to 823 K. The crystal structures were determined by single-crystal X-ray diffraction. Sr8Cu3In4N5 has an orthorhombic structure (space group, Immm, Z=2, a=3.8161(5) Å, b=12.437(2) Å, c=18.902(2) Å), and is isostructural with Ba8Cu3In4N5. It contains nitridocuprates of isolated units 0[CuN2] and one-dimensional linear chains 1[CuN2/2] and one-dimensional indium clusters 1[In2In2/2]. Sr0.53Ba0.47CuN crystallizes in an orthorhombic cell, space group Pbcm, Z=4, a=5.4763(7) Å, b=9.2274(12) Å, c=9.0772(12) Å. The structure contains infinite zig-zag chains 1[CuN2/2] which kink at every second nitrogen atom.  相似文献   

4.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

5.
For La1−xThxNbO4+x/2, three phases with broad homogeneity regions occur, for 0.075 ≤ x ≤ 0.37, 0.41 < x < 0.61, and 0.65 ≤ x ≤ 0.74. All are related to the scheelite structure type, with at least the first exhibiting an incommensurate structural modulation. An analogous structurally modulated phase was found for LaNb1−xWxO4+x/2 for 0.11 ≤ x ≤ 0.22. Additional phases occur at La0.2Th0.8NbO4.4 and LaNb0.4W0.6O4.3. The electrical conductivity and the direction and wavelength of the structural modulation have been characterized for the La1−xThxNbO4+x/2 phase with 0.075 ≤ x ≤ 0.37.  相似文献   

6.
Substitution of rare earths of various size (i.e., La and Yb) in the superconducting 2212 phase Bi2Sr2Ca1−yLnyCu2O8+x+y/2 (0 ≤ y ≤ 1) shows: (i) the larger La atoms substitute preferentially on the Sr site while the small Yb atoms occupy the Ca site; (ii) the superconductive property disappears when y reaches 0.5; (iii) as the Yb-doped phase approaches y = 0.5 the oxygen layers sandwiched between the Bi layers rearrange; an effect which may be associated with the observed variation of the modulation vector of the superstructure and, subsequently, with the phenomenon of superconductivity. Various phases corresponding to y = 0.1, 0.2, 0.3, 0.4, and 0.5 have been identified as separate through powder and single crystal diffraction, X-ray techniques, and electron microscopy investigations and their superconductivity properties checked by four probe resistivity measurements.  相似文献   

7.
A new lanthanum bismuth oxide, Bi8La10O27, has been synthesized. It crystallizes in the Immm space group with the following parameters: a = 12.079 (2) Å, b = 16.348 (4) Å, c = 4.0988 (5) Å. Its structure was determined from powder X-ray and neutron diffraction data. It can be described as an oxygen deficient fluorite superstructure (a ≈ 3aF/√2, b ≈ 3aF, caF/√2) in which bismuth and lanthanum, as well as oxygen vacancies, are ordered. The structure consists of fully occupied (110) or lanthanum planes (La) which alternate with mixed planes and fully occupied oxygen planes (A) which alternate with two sorts of oxygen deficient (110) or planes (B and C) according to the sequence . The anionic distribution determines tunnels where the bismuth ions are located, forming diamond-shaped based tunnels. The coordination of bismuth and lanthanum is discussed. The high thermal factor of some oxygen atoms suggests that this oxide exhibits ionic conductivity.  相似文献   

8.
The crystal structures of Sr10Ga6O19 and Sr3Ga2O6 have been characterized using X-ray diffraction techniques. In the case of Sr10Ga6O19, the structure was determined from a single crystal diffraction data set collected at room conditions and refined to a final R index of 0.061 for 3471 observed reflections (I>2 σ(I)). The compound is monoclinic with space group C12/c1 (a=34.973(4) Å, b=7.934(1) Å, c=15.943(2) Å, β=103.55(1)°, V=4300.7(6) Å3, Z=8, Dcalc=4.94 g/cm3, μ(Mo)=32.04 mm−1) and can be classified as an oligogallate. It is the first example of an inorganic compound where six [TO4]-tetrahedra of only one chemical species occupying the tetrahedral centres are linked via bridging oxygen atoms to form [T6O19] groups. The hexamers are not linear, but highly puckered. Eleven symmetrically different Sr cations located in planes parallel (100) crosslink between the oligo-groups. They are coordinated by six to eight oxygen ligands. The structure of Sr3Ga2O6 has been refined from powder diffraction data using the Rietveld method (space group Pa , a=16.1049(1), V=4177.1(1) Å3, Z=24, Dcalc=4.75 g/cm3). The compound is isostructural with tricalcium aluminate and contains highly puckered, six-membered [Ga6O18]18− rings. The rings are linked by strontium cations having six to nine nearest oxygen neighbors.  相似文献   

9.
Crystals of Ln5Mo2O12 (Ln = Y, Gd) were grown by electrochemical reduction of alkali-molybdate/rare-earth oxide melts at 1075–1100°C. A single crystal of Y5Mo2O12, used for structure determination, was found to be monoclinic with a = 12.2376(7) Å, b = 5.7177(8) Å, c = 7.4835(5) Å, β = 108.034(5)°, and Z = 2. Although the structure was refined in space group C2/m, the true space group appears to be P21/m. In Y5Mo2O12, rutile-like sheets of edge-shared MoO6 chains linked by YO6 octahedra are interconnected with YO7 monocapped trigonal prisms. The Mo atoms in the chains have alternating distances of 2.496 and 3.221 Å and in that respect are similar to MoO2. However, in contrast to metallic MoO2 both the Y and Gd compounds are n-type semiconductors with room temperature resistivities of the order of 103 ohm-cm. Magnetic susceptibility measurements confirm the presence of one unpaired electron per Mo2 unit. The semiconducting behavior can be explained in terms of an unfavorable bridging oxygen coordination which prevents electron delocalization through metal-oxygen pi bonding as in MoO2.  相似文献   

10.
Nanosized Fe2O3 clusters are pillared in the interlayer spaces of layered perovskites, H1−xLaxCa2−xNb3O10 (0≤x≤0.75) by a guest-exchange reaction using the trinuclear acetato-hydroxo iron cation, [Fe3(OCOCH3)7 OH·2H2O]+. The interlayer spaces of niobate layers are pre-expanded with n-butylammonium cations (n-C4H9NH+3), which are subsequently replaced by bulky iron pillaring species to form Fe(III) complex intercalated layer niobates. Upon heating at 380°C, the interlayered acetato-hydroxo iron complexes are converted into Fe2O3 nanoclusters with a thickness of ca. 3.5 Å irrespective of the interlayer charge density (x). The band-gap energy of the Fe2O3 pillars (Eg2.25 eV) is slightly larger than that of bulk Fe2O3 (Eg2.20 eV) but is smaller than that expected for such a small-sized semiconductor, which can be assigned to the pancake-shaped Fe2O3 pillars of 3.5 Å in height with comparatively large lateral dimension. X-ray absorption spectroscopic measurements at the Fe K-edge are carried out in order to obtain structural information on the Fe2O3 pillars stabilized between the niobate layers. XANES analysis reveals that the interlayer FeO6 octahedra have coordination environments similar to that of bulk α-Fe2O3, but noncentrosymmetric distortion of interlayered FeO6 is enhanced due to the asymmetric electric potential exerted by the negatively charged niobate layers. Scanning electron microscopic observation and nitrogen adsorption–desorption isotherm measurement suggest that the pillared derivatives are nanoporous materials with the highest BET specific surface area of ca. 116 m2/g.  相似文献   

11.
A combination of electron, synchrotron X-ray and neutron powder diffraction reveals a new orthorhombic structure type within the Sr-doped rare earth perovskite cobaltates Ln1−xSrxCoO3−δ (Ln=Y3+, Dy3+, Ho3+, Er3+, Tm3+and Yb3+). Electron diffraction shows a C-centred cell based on a 2√2ap×4ap×4√2ap superstructure of the basic perovskite unit. Not all of these very weak satellite reflections are evident in the synchrotron X-ray and neutron powder diffraction data and the average structure of each member of this series could only be refined based on Cmma symmetry and a 2√2ap×4ap×2√2ap cell. The nature of structural and magnetic ordering in these phases relies on both oxygen vacancy and cation distribution. A small range of solid solution exists where this orthorhombic structure type is observed, centred roughly around the compositions Ln0.2Sr0.8CoO3−δ. In the case of Yb3+ the pure orthorhombic phase was only observed for 0.850?x?0.875. Tetragonal (I4/mmm; 2ap×2ap×4ap) superstructures were observed for compositions having higher or lower Sr-doping levels, or for compounds with rare earth ions larger than Dy3+. These orthorhombic phases show mixed valence (3+/4+) cobalt oxidation states between 3.2+ and 3.3+. DC magnetic susceptibility measurements show an additional magnetic transition for these orthorhombic phases compared to the associated tetragonal compounds with critical temperatures > 330 K.  相似文献   

12.
Crystal structure, redox, and magnetic properties for the Pr1−xSrxFeO3−δ solid-solution phase have been studied. Oxidized samples (prepared in air at 900°C) crystallize in the GdFeO3-type structure for 0≤x≤0.80, and probably in the Sr8Fe8O23-type (unpublished) structure for x=0.90. Reduced samples (containing virtually only Fe3+) crystallize as the perovskite aristotype for x=0.50 and 0.67 with randomly distributed vacancies. The Fe4+ content increases linearly in the oxidized samples up to x≈0.70, whereupon it stabilizes at around 55%. Antiferromagnetic ordering of the G type is observed for oxidized samples (0≤x≤0.90) which show decreasing Néel temperature and ordered magnetic moment with increasing x, while the Néel temperature is nearly constant at 700 K for reduced samples. Electronic transitions for iron from an average-valence state via charge-separated to disproportionated states are proposed from anomalies in magnetic susceptibility curves in the temperature ranges 500–600 K and 150–185 K.  相似文献   

13.
The ternary stoichiometric perovskite compounds, Na0.75Ln0.25Ti0.5Nb0.5O3 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) are intermediate members of the NaNbO3-Na0.5Ln0.5TiO3 solid solution series. The compounds were synthesized by standard ceramic methods at 1300 °C followed by annealing at 800 °C and quenching to ambient conditions. Rietveld analysis of the powder X-ray diffraction patterns shows that the compounds with Ln ranging from Pr to Tm adopt the orthorhombic space group Pbnm (ab≈√2ap; c≈2ap; Z=4) and the GdFeO3 structure. In contrast, Na0.75La0.25Ti0.5Nb0.5O3 adopts the orthorhombic space group Cmcm (abc≈2ap; Z=4). All cations located at the A- and B-sites are disordered in these compounds. The unit cell parameters and cell volumes of the compounds decrease regularly with increasing atomic number of the Ln cation. The Pbnm compounds with Ln from Sm to Tm have A-site cations in eight-fold coordination. A-site cations in the Pr and Nd compounds are considered to be in ten-fold coordination. Analysis of the crystal chemistry of the Pbnm compounds shows that B-site cations enter the second coordination sphere of the A-site cations for compounds with Ln from Tb to Tm as the A-B intercation distances are less than the maximum A-IIO(2) bond lengths. The [111] tilt angles of the (Ti,Nb)O6 polyhedra in the Pbnm compounds increase with increasing atomic number from 11.1° to 15.8° and are less than those observed in lanthanide orthoferrite and orthoscandate perovskites. These data are considered as relevant to the sequestration of lanthanide fission products in perovskite and the structure of lanthanide-bearing perovskite-structured minerals.  相似文献   

14.
The solid solution Li8−2xCaxCeO6 (0 < x ≤ 0,5) and the definite phase Li6CaCeO6 have been obtained at 800°C through a study of Li---Ca---Ce---O system. Electrical measurements on the doped phases Litetr.6 [Li2-2xCaxCe□]oct.O6 show that the conductivity varies slightly with the creation of vacancies in the octahedral layers. This result unambiguously confirms the following diffusion mechanism: the conduction is assumed essentially by lithium ions located in the tetrahedral layers. The compound Li6CaCeO6 is isostructural with Li6In2O6. The cell is trigonal, Å, c = 10,603 Å, c/a = 1,0587, and Z = 6. This new quaternary phase, which belongs to the same structural family of oxides of the type Li8MO6, either pure or doped with calcium, may be represented by the formula Litetr.6[Ca Ce□]oct.O6. Electrical and structural data are correlated for this compound.  相似文献   

15.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

16.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

17.
The phase composition and electroconduction in air of solid electrolytes (Ce0.8Sm0.2)1 − x CuxO2 − δ (CSCu), where x = 0, 2, 5, 10, and 20 mol % and which are synthesized using the ceramic technology, are studied. Adding an additive of CuO lowers the CSCu sintering temperature by 100– 200°C and leads to the formation of single-phase solid solutions of a fluorite type up to x = 10 mol %. The electroconductivity of the CSCu electrolytes remains practically invariant upon adding up to 5 mol % Cu and equals 0.089–0.095 and 0.017–0.021 S cm−1 at 800 and 600°C. The sintering, adhesion, and electroconductance of composite cathodes based on La0.8Sr0.2MnO3 with 40% CSCu and their electrochemical behavior in air in the temperature interval 900–1000°C on carrying electrolyte Zr0.9Y0.1O1.95 with a CSCu sublayer containing 2 mol % Cu are studied.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 656–661.Original Russian Text Copyright © 2005 by Bogdanovich, Gorelov, Balakireva, Dem’yanenko.  相似文献   

18.
The structure of Ni0.85Mo6Te8 was refined from single-crystal X-ray diffraction data at room temperature. It is triclinic, space group
; 1619 reflections, 75 refined parameters, R = 0.031. The Mo atoms form distorted octahedral clusters (2.69 Å ≤ dintra[Mo---Mo] ≤ 2.81 Å; 3.58 Å < dinter[Mo---Mo]). The Ni atoms are disordered (site occupancy: 0.423(7); d[Ni---Ni] = 2.586(6) Å), and interact strongly with one Mo6 cluster (d[Ni---Mo] = 2.603(3) and 2.958(3) Å), and weakly with another (d[Ni---Mo] = 2.985(3) Å). The structure transforms at 1057(5) K into a rhombohedral modification (ahex = 10.457(2) Å, chex = 11.866(3) Å at 1073 K). Measurements on powders suggest metallic conductivity (5.1 × 10−4 Ω-cm at 293 K) and weakly temperature-dependent paramagnetism (110 × 10−6 emu/g at 100 K).  相似文献   

19.
We substitute La for Sr in the Sr2FeReO6 double perovskite to see how electron doping affects its properties. Sr2−xLaxFeReO6 compounds can be prepared up to x = 0.5. Beyond this value, a secondary phase is formed. The replacement of Sr by La leads to an increase of the unit cell volume and to a rise of the Curie temperature. However, both the saturated magnetic moment and the room-temperature magnetoresistance decrease with increasing the La content. The substituted compounds are magnetically hard and show maxima in the electrical resistivity at field values close to the coercive field. Our structural study reveals a low content of anti-site defects for all samples studied. The average Fe–O bond lengths remain almost constant upon doping whereas the Re–O distances increase as x increases. This suggests that electrons mainly go to the Re orbitals.  相似文献   

20.
The possibility to synthesize layered oxycarbonates, with nominal composition Sr4Fe2−xMnxO6CO3 involving trivalent manganese, with 0≤x≤1.5, is reported for the first time. The structural study of Sr4FeMnO6CO3 using NPD, HREM, Mössbauer and XANES, shows that this phase is closely related to n=3 member of the Ruddlesden–Popper family. It derives from the latter by replacing the middle layer of transition metal octahedra by triangular CO3 groups, with two different “flag” and “coat hanger” configurations. The magnetic order is antiferromagnetic and fundamentally different from the magnetic behavior of Sr4Fe2O6CO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号