首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.  相似文献   

2.
A new class of Hamiltonian dynamical systems with two degrees of freedom is studied, for which the Hamiltonian function is a linear form with respect to moduli of both momenta. For different potentials such systems can be either completely integrable or behave just as normal nonintegrable Hamiltonian systems with two degrees of freedom: one observes many of the phenomena characteristic of the latter ones, such as a breakdown of invariant tori as soon as the integrability is violated; a formation of stochastic layers around destroyed separatrices; bifurcations of periodic orbits, etc. At the same time, the equations of motion are simply integrated on subsequent adjacent time intervals, as in billiard systems; i.e., all the trajectories can be calculated explicitly: Given an initial data, the state of the system is uniquely determined for any moment. This feature of systems in interest makes them very attractive models for a study of nonlinear phenomena in finite-dimensional Hamiltonian systems. A simple representative model of this class (a model with quadratic potential), whose dynamics is typical, is studied in detail. (c) 1997 American Institute of Physics.  相似文献   

3.
陈勇  范恩贵 《中国物理》2007,16(1):6-15
In this pager a pure algebraic method implemented in a computer algebraic system, named multiple Riccati equations rational expansion method, is presented to construct a novel class of complexiton solutions to integrable equations and nonintegrable equations. By solving the (2+1)-dimensional dispersive long wave equation, it obtains many new types of complexiton solutions such as various combination of trigonometric periodic and hyperbolic function solutions, various combination of trigonometric periodic and rational function solutions, various combination of hyperbolic and rational function solutions, etc.  相似文献   

4.
We study the dynamics of one-particle and few-particle billiard systems in containers of various shapes. In few-particle systems, the particles collide elastically both against the boundary and against each other. In the one-particle case, we investigate the formation and destruction of resonance islands in (generalized) mushroom billiards, which are a recently discovered class of Hamiltonian systems with mixed regular-chaotic dynamics. In the few-particle case, we compare the dynamics in container geometries whose counterpart one-particle billiards are integrable, chaotic, and mixed. One of our findings is that two-, three-, and four-particle billiards confined to containers with integrable one-particle counterparts inherit some integrals of motion and exhibit a regular partition of phase space into ergodic components of positive measure. Therefore, the shape of a container matters not only for noninteracting particles but also for interacting particles.  相似文献   

5.
Most of the nonlinear physics systems are essentially nonintegrable.There in no very doog analytical approach to solve nonintegrable system.The variable separation approach is a powerful method in linear physics.In this letter,the formal variable separation approach is established to solve the generalized nonlinear mathematical physics equation.The method is valid not only for integrable models but also for nonintegrable models.Taking a nonintegrable coupled KdV equation system as a simple example,abundant solitary wave solutions and conoid wave solutions are revealed.  相似文献   

6.
We consider magnetic flows on compact quotients of the 3-dimensional solvable geometry Sol determined by the usual left-invariant metric and the distinguished monopole. We show that these flows have positive Liouville entropy and therefore are never completely integrable. This should be compared with the known fact that the underlying geodesic flow is completely integrable in spite of having positive topological entropy. We also show that for a large class of twisted cotangent bundles of solvable manifolds every compact set is displaceable.  相似文献   

7.
The sine-Gordon model with a variable mass (VMSG) appears in many physical systems, ranging from the current through a nonuniform Josephson junction to DNA-promoter dynamics. Such models are usually nonintegrable with solutions found numerically or perturbatively. We construct a class of VMSG models, integrable at both the classical and the quantum levels with exact soliton solutions, which can accelerate and change their shape, width, and amplitude simulating realistic inhomogeneous systems at certain limits.  相似文献   

8.
Generalized billiards describe nonequilibrium gas, consisting of finitely many particles, that move in a container, whose walls heat up or cool down. Generalized billiards can be considered both in the framework of the Newtonian mechanics and of the relativity theory. In the Newtonian case, a generalized billiard may possess an invariant measure; the Gibbs entropy with respect to this measure is constant. On the contrary, generalized relativistic billiards are always dissipative,and the Gibbs entropy with respect to the same measure grows under some natural conditions. In this article, we find the necessary and sufficient conditions for a generalized Newtonian billiard to possess a smooth invariant measure, which is independent of the boundary action: the corresponding classical billiard should have an additional first integral of special type. In particular,the generalized Sinai billiards do not possess a smooth invariant measure. We then consider generalized billiards inside a ball, which is one of the main examples of the Newtonian generalized billiards which does have an invariant measure. We construct explicitly the invariant measure, and find the conditions for the Gibbs entropy growth for the corresponding relativistic billiard both formonotone and periodic action of the boundary.  相似文献   

9.
We study the localized coherent structures ofa generally nonintegrable (2 1 )-dimensional KdV equation via a variable separation approach. In a special integrable case, the entrance of some arbitrary functions leads to abundant coherent structures. However, in the general nonintegrable case, an additional condition has to be introduced for these arbitrary functions. Although the additional condition has been introduced into the solutions of the nonintegrable KdV equation, there still exist many interesting solitary wave structures. Especially, the nonintegrable KdV equation possesses the breather-like localized excitations, and the similar static ring soliton solutions as in the integrable case. Furthermor,in the integrable case, the interaction between two travelling ring solitons is elastic, while in the nonintegrable case we cannot find even the single travelling ring soliton solution.  相似文献   

10.
An extension of the algebraic-geometric method for nonlinear integrable PDE's is shown to lead to new piecewise smooth weak solutions of a class of N-component systems of nonlinear evolution equations. This class includes, among others, equations from the Dym and shallow water equation hierarchies. The main goal of the paper is to give explicit theta-functional expressions for piecewise smooth weak solutions of these nonlinear PDE's, which are associated to nonlinear subvarieties of hyperelliptic Jacobians. The main results of the present paper are twofold. First, we exhibit some of the special features of integrable PDE's that admit piecewise smooth weak solutions, which make them different from equations whose solutions are globally meromorphic, such as the KdV equation. Second, we blend the techniques of algebraic geometry and weak solutions of PDE's to gain further insight into, and explicit formulas for, piecewise-smooth finite-gap solutions. The basic technique used to achieve these aims is rather different from earlier papers dealing with peaked solutions. First, profiles of the finite-gap piecewise smooth solutions are linked to certain finite dimensional billiard dynamical systems and ellipsoidal billiards. Second, after reducing the solution of certain finite dimensional Hamiltonian systems on Riemann surfaces to the solution of a nonstandard Jacobi inversion problem, this is resolved by introducing new parametrizations. Amongst other natural consequences of the algebraic-geometric approach, we find finite dimensional integrable Hamiltonian dynamical systems describing the motion of peaks in the finite-gap as well as the limiting (soliton) cases, and solve them exactly. The dynamics of the peaks is also obtained by using Jacobi inversion problems. Finally, we relate our method to the shock wave approach for weak solutions of wave equations by determining jump conditions at the peak location. Received: 16 February 1999 / Accepted: 10 April 2001  相似文献   

11.
Debabrata Biswas 《Pramana》1994,42(6):447-453
The length spectrum of periodic orbits in integrable hamiltonian systems can be expressed in terms of the set of winding numbers {M 1,…,M f} on thef-tori. Using the Poisson summation formula, one can thus express the density, Σδ(TT M), as a sum of a smooth average part and fluctuations about it. Working with homogeneous separable potentials, we explicitly show that the fluctuations are due to quantal energies. Further, their statistical properties are universal and typical of a Poisson process as in the corresponding quantal energy eigenvalues. It is interesting to note however that even though long periodic orbits in chaotic billiards have similar statistical properties, the form of the fluctuations are indeed very different.  相似文献   

12.
We design a computational experiment in which a quantum particle tunnels into a billiard of variable shape and scatters out of it through a double-slit opening on the billiard's base. The interference patterns produced by the scattered probability currents for a range of energies are investigated in relation to the billiard's geometry which is connected to its classical integrability. Four billiards with hierarchical integrability levels are considered: integrable, pseudointegrable, weak-mixing, and strongly chaotic. In agreement with the earlier result by Casati and Prosen [Phys. Rev. A 72, 032111 (2005)], we find the billiard's integrability to have a crucial influence on the properties of the interference patterns. In the integrable case, most experiment outcomes are found to be consistent with the constructive interference occurring in the usual double-slit experiment. In contrast to this, nonintegrable billiards typically display asymmetric interference patterns of smaller visibility characterized by weakly correlated wave function values at the two slits. Our findings indicate an intrinsic connection between the classical integrability and the quantum dephasing, which is responsible for the destruction of interference.  相似文献   

13.
We investigate the probability distribution of the quantum fluctuations of thermodynamic functions of finite, ballistic, phase-coherent Fermi gases. Depending on the chaotic or integrable nature of the underlying classical dynamics, on the thermodynamic function considered, and on temperature, we find that the probability distributions are dominated either (i) by the local fluctuations of the single-particle spectrum on the scale of the mean level spacing, or (ii) by the long-range modulations of that spectrum produced by the short periodic orbits. In case (i) the probability distributions are computed using the appropriate local universality class, uncorrelated levels for integrable systems, and random matrix theory for chaotic ones. In case (ii) all the moments of the distributions can be explicitly computed in terms of periodic orbit theory and are system-dependent, nonuniversal, functions. The dependence on temperature and on number of particles of the fluctuations is explicitly computed in all cases, and the different relevant energy scales are displayed.  相似文献   

14.
Track Billiards     
We study a class of planar billiards having the remarkable property that their phase space consists up to a set of zero measure of two invariant sets formed by orbits moving in opposite directions. The tables of these billiards are tubular neighborhoods of differentiable Jordan curves that are unions of finitely many segments and arcs of circles. We prove that under proper conditions on the segments and the arcs, the billiards considered have non-zero Lyapunov exponents almost everywhere. These results are then extended to a similar class of 3-dimensional billiards. Interestingly, we find that for some track billiards, the mechanism generating hyperbolicity is not the defocusing one, which requires every infinitesimal beam of parallel rays to defocus after every reflection off of the focusing boundary.  相似文献   

15.
Abstract

An efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced. The method can be applied to nonintegrable equations as well as to integrable ones. Examples include multisoliton and periodic solutions of the famous integrable evolution equation (KdV) and the new solutions, describing interaction of solitary waves of nonintegrable equation.  相似文献   

16.
The aim of this paper is to introduce a class of Hamiltonian autonomous systems in dimension 4 which are completely integrable and their dynamics is described in all details. They have an equilibrium point which is stable for some rare elements of the class, and unstable in most cases. Anyhow, it is linearly stable (all orbits of the linearized system are bounded) and no motion is asymptotic in the past, namely no non-constant solution has the equilibrium as limit point as time goes to minus infinity. In the unstable cases, there is a sequence of initial data which converges to the equilibrium point whose corresponding solutions are unbounded and the motion is slow. So instability is quite weak and perhaps no such explicit examples of instability are known in the literature. The stable cases are also interesting since the level sets of the 2 first integrals independent and in involution keep being non-compact and stability is related to the isochronous periodicity of all orbits near the equilibrium point and the existence of a further first integral. Hopefully, these superintegrable Hamiltonian systems will deserve further research.  相似文献   

17.
The Painlevé property of anharmonic systems with an external periodic field is investigated. This property tell us that the only movable singularities exhibited by the solutions are poles. The Painlevé property can serve to distinguish between integrable and nonintegrable systems.  相似文献   

18.
《Physics letters. A》1999,263(3):157-166
For a billiard of a general shape a transformation is introduced which projects the boundary on the unit circle. This introduces a non-Euclidean metric on the plane which contains all relevant information of the shape of the boundary. Classically the straight lines of the free motion correspond to geodesics and quantum mechanically the energy spectrum is that of Laplace–Beltrami operator with Dirichlet boundary conditions on the unit circle. The geodesic equations are highly non-linear. Nevertheless for the interval between two consecutive scatterings we have two integrals of motion, the kinetic energy and the angular momentum. This fact helps to solve explicitly the geodesic equations. These solutions can be used to derive interesting properties for the classical scattering. Quantum mechanically the spectrum of the above billiards is obtained for certain parameter values both perturbatively for small values of the parameter and also using a diagonalization procedure. This method is applicable to any particular form of a billiard for which the transformation is invertible and can be used on one hand as a quick method of approximate spectral determination and as a theoretical tool to analyse specific properties of integrability and chaos through the associated connection form and the Laplace–Beltrami operator. Finally as a first indication of the potentiality of this method we present a graphical test where for very small deviations from the circular billiard an integrable and two non-integrable billiards can be distinguished by the distribution of the differences of the first order corrections while this distinction is not evident by the usual test for the nearest neighbor level spacings.  相似文献   

19.
We classify when local instability of orbits of closeby points can occur for billiards in two dimensional polygons, for billiards inside three dimensional polyhedra and for geodesic flows on surfaces of three dimensional polyhedra. We sharpen a theorem of Boldrighini, Keane and Marchetti. We show that polygonal and polyhedral billiards have zero topological entropy. We also prove that billiards in polygons are positive expansive when restricted to the set of non-periodic points. The methods used are elementary geometry and symbolic dynamics.  相似文献   

20.
We explain how to exploit systematically the structure of nilpotent orbits to obtain a solvable system of equations describing extremal solutions of (super-)gravity theories, i.e. systems that can be solved in a linear way. We present the procedure in the case of the STU model, where we show that all extremal solutions with a flat three-dimensional base are fully described with the help of three different nilpotent orbits: the BPS, the almost-BPS and the composite non-BPS. The latter describes a new class of solutions for which the orientation of half of the constituent branes have been inverted with respect to the BPS one, such that all the centres are intrinsically non-BPS, and interact with each others. We finally recover explicitly the ensemble of the almost-BPS solutions in our formalism and present an explicit two-centre solution of the new class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号