首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.  相似文献   

2.
The evolution of a polycrystalline magnesium surface during oxidation at room temperature has been studied by Metastable Impact Electron Spectroscopy (MIES). This technique allowed us to follow the metal-to-insulator transformation of the top layer of the surface. An electronic signal corresponding to a metallic behavior of the surface evidences the presence of under-stoichiometric MgO species on the surface. The total covering by oxygen of the Mg surface uppermost layer, obtained at around 10 L of oxygen deposition, does not correspond to a fully insulating surface. An insulating surface is obtained after 30 L of oxygen deposition. Depositions of CO2 on a clean and a preoxidized polycrystalline Mg surface have been analyzed to give information about the composition of the surface and its evolution. CO2 adsorption in the form of CO32− compounds on preoxidized Mg is more efficient than on clean Mg. Oxygen species, corresponding to chemisorbed oxygen less bounded than oxygen in the MgO lattice, allows the formation of CO32−. Therefore, it is concluded that during oxygen deposition at room temperature, MgO islands and chemisorbed oxygen species coexist on the surface. Moreover, the larger the oxygen predeposition is, the less CO32− compounds are formed, meaning a decrease of available chemisorbed oxygen sites. From oxidation measurements at high temperature (420 K), we show that MgO islands and uncovered Mg domain coexist. Further, no under-stoichiometric compound features have been observed. The high temperature allows the direct formation of oxide MgO species in islands.  相似文献   

3.
(9−x)CaO·xMgO·15Na2O·60SiO2·16CaF2(x=0, 2, 4, 6, and 9) oxyfluoride glasses were prepared. Utilizing the Raman scattering technique together with 29Si and 19F MAS NMR, the effect of alkaline metal oxides on the Q species of glass was characterized. Raman results show that as magnesia is added at the expense of calcium oxide, the disproportional reaction Q3→Q4+Q2 (Qn is a SiO4 tetrahedron with n bridging oxygens) prompted due to the high ionic field strength of magnesia, magnesium oxide entered into the silicate network as tetrahedral MgO4, and removed other modifying ions for charge compensation. This reaction was confirmed by 29Si MAS NMR. 19F MAS NMR results show that fluorine exists in the form of mixed calcium sodium fluoride species in all glasses and no Si–F bonds were formed. As CaO is gradually replaced by MgO (x=6, 9), a proportion of the magnesium ions combines with fluorine to form the MgF+ species. Meanwhile, some part of Na+ ions complex F in the form of F–Na(6).  相似文献   

4.
Sodium borophosphate glasses doped with copper ions having general composition 20Na2O-20ZnO-25B2O3-(35-x) P2O5-x CuO (x=1-8 mol %) were prepared using conventional melt-quench method and characterized by density, UV-visible optical absorption, photoluminescence and conductivity measurements. Eoptical values for different glass samples are found to decrease systematically from 3.5 to 2.5 eV with increase in CuO content in the glass. Network modifying action of CuO with the glass network has been confirmed from the UV-visible optical absorption studies. Presence of Copper in the form of Cu+ species has been confirmed from photoluminescence measurements. The electrical conductivity (σ) increases with increase in copper oxide content in the glass and temperature dependence of electrical conductivity confirmed the semiconducting nature of the samples.  相似文献   

5.
Photoluminescence properties of Bi3+ co-doped Eu3+ containing zinc borate glasses have been investigated and the results are reported here. Bright red emission due to a dominant electric dipole transition 5D07F2 of the Eu3+ ions has been observed from these glasses. The nature of Stark components from the measured fluorescence transitions of Eu3+ ions reveal that the rare earth ions could take the lattice sites of Cs or lower point symmetry in the zinc borate glass hosts. The significant enhancement of Eu3+ emission intensity by 346 nm excitation (1S03P1 of Bi3+ ions) elucidates the sensitization effect of co-dopant. The energy transfer mechanism between sensitizer (Bi3+) and activator (Eu3+) ions has been explained.  相似文献   

6.
Porous copper oxide microrods have been synthesized via calcining copper glycinate monohydrate microrod precursor which was prepared in mild conditions without any template or additive. Several techniques, such as X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analyses, were used to characterize the structure and morphology of the products. Scanning electron microscopy (SEM) analyses show that the precursor consists of a large quantity of uniform rod-like micro/nanostructures with typical lengths in the range of 25–40 µm and diameters in the range of 0.1–0.35 µm. The microrod-like precursors transformed into porous microrod products after calcination at 450 °C in flow air for 2 h. The BET surface area of the porous CuO microrods was calculated to be 8.5 m² g−1. In addition, the obtained porous CuO microrods were used as catalysts to photodegrade rhodamine B (RhB), methyl orange, methylene blue, eosin B, and p-nitrophenol. Compared with commercial CuO powders, the as-prepared porous CuO microrods exhibit superior properties on photocatalytic decomposition of RhB due to their porous hierarchical structures.  相似文献   

7.
The glass systems xCuO . (1- x)TeO2 and xCuO . (1- x)[75TeO2 . 25B2O3] with 0 < x ? 50 mol% were investigated by means of X-ray diffraction, electron paramagnetic resonance (EPR) and a.c. magnetic susceptibility ( ) measurements, the principal aim of the investigation being the study of the structural modifications in the tellurite glasses introduced by the addition of boron oxide. In the case of first glass system, i.e. without B2O3, EPR spectra of Cu2+ ions undergo changes with the increasing concentration of CuO. At very low concentrations, spectra are due to isolated Cu2+ ions in axially distorted octahedral sites. The EPR signal for samples with 3 ? x ? 20 mol% can be explained as being the superposition of two EPR absorptions, one showing the hyperfine structure typical for isolated Cu2+ ions and the other consisting of a symmetric line typical for clustered ions. The broadening of the absorption band is due to dipolar as well exchange interaction. The susceptibility data show that for x > 20 mol%, the Cu2+ ions are predominantly clustered and are coupled through antiferromagnetic exchange interaction. A comparative study of amorphous X-ray diffraction pattern of the glasses indicates a structural modification in the TeO2 network with increasing CuO concentration; the effect is quite visible in the samples with CuO concentrations higher than 20 mole percent. Measurements of density corroborate the conclusions drawn from the X-ray diffraction. Additionally, we show that our data validates a model in which CuO rich regions are surrounded by a buffer boundary which separates them from the tellurite glassy network; effect of introducing B2O3 can be best described as breaking these regions into smaller size regions. Received 23 October 2000 and Received in final form 1st February 2001  相似文献   

8.
The valence state of copper ions and the phase composition of copper monoxide CuO subjected to bombardment by He+ ions and explosive shock waves are studied by the methods of x-ray photoelectron spectroscopy (XPS) and x-ray emission spectroscopy (XES). Measurements of photoelectron Cu 2p and emission O Kα spectra revealed a decrease in the concentration of Cu2+ ions and partial reduction of CuO to Cu2O as a result of both ion bombardment and shock-wave loading. The concentration of the Cu2O phase attained values of 10–15%. The Cu2O phase is revealed by the XPS and XES methods even at concentrations lower than its threshold concentration for detection by x-ray diffraction measurements. This points to the effectiveness of XPS and XES techniques in studying nanocrystalline materials and defect structures containing finely dispersed inclusions. A model for the emergence of Cu2O due to the formation of charged clusters under the action of stress waves is proposed.  相似文献   

9.
Lithium niobate (LiNbO3) crystals doped with chromium ions show a clear green colouring reflecting the absorption profile of the dominating [Cr]Li defect centres. A significant change in its colouration takes place when it is co-doped with other valency impurities such as Mg2+, Sc3+ and W6+, above a certain threshold concentration. This concentration singularity has been attributed to the formation of [Cr]Nb centres coexisting with the [Cr]Li centres.In this work, we extended the investigation on the effect of co-dopant ions in Cr:LiNbO3 to tetravalent cation such as GeO2. A singularity in the relative intensity of the 4A24T1 and 4A24T2 absorption band was observed for a concentration of ~1.5 mol%, compared with 4.5 mol% for Mg2+. The photoluminescence emission spectra also reveal a new emission band, at a lower energy than the [Cr]Li centre, corresponding to this threshold concentration. A charge compensation model is proposed to explain the role of cation impurities and results are compared with those of other valence impurities.  相似文献   

10.
The X-ray photoelectron spectra of Co, Ni and Cu 2p levels for samples of MxMg1-xO (M = Co, Ni, Cu), CoO, NiO and CuO were compared. The binding energies of metal 2p32 levels did not change with their concentration. The shake-up satellite main peak intensity ratios and FWHM of metal 2p levels for Co2+ and Cu2+ in MgO were smaller than those for CoO and CuO. The Ni 2p32 spectrum for Ni2+ in MgO had no shoulder, unlike NiO. Results indicate that next nearest neighbor ions (metal ions) may influence the final states after photoelectron ejection.  相似文献   

11.
The duplex oxide film potentiostatically formed on copper in concentrated alkaline media has been investigated by XRD, XPS, negative-going voltammetry and cathodic chronopotentiometry. The interfacial capacity was also measured using fast triangular voltage method under quasi-stationary condition. The obvious differences in the thickness, composition, passivation degree and capacitance behavior were observed between the duplex film formed in lower potential region (−0.13 to 0.18 V versus Hg|HgO electrode with the same solution as the electrolyte) and that formed in higher potential region (0.18-0.60 V). Cuprous oxides could be formed and exist stably in the inner layer in the both potential regions, and three cupric species, soluble ions and Cu(OH)2 and CuO, could be independently produced from the direct oxidation of metal copper, as indicated by three pairs of redox voltammetric peaks. One of the oxidation peaks appeared only after the scan was reversed from high potential and could be attributed to CuO formation upon the pre-accumulation of O2− ions within the film under high anodic potentials. A new mechanism for the film growth on the investigated time scale from 1 to 30 min is proposed, that is, the growth of the duplex film in the lower potential region takes place at the film|solution interface to form a thick Cu(OH)2 outer layer by field-assisted transfer of Cu2+ ions through the film to solution, whereas the film in the higher potential region grows depressingly and slowly at the metal|film interface to form Cu2O and less CuO by the transfer of O2− ions through the film to electrode.  相似文献   

12.
10MO·20Bi2O3·(70−x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.  相似文献   

13.
Control on the size of copper oxide (CuO) in the nano range is a highly motivating approach to study its multifunctional nature. The present investigation reports a sol-gel derived Ni doped CuO nanoparticles (Cu1-xNixO). Rietveld refinement of the XRD spectra confirms the formation of single monoclinic phase of Cu1-xNixO nanoparticles having crystallite size within the range of 19–21 nm. Raman spectra show the presence of characteristics Raman active modes and vibrational bands in the Cu1-xNixO samples that corroborate the monoclinic phase of the samples as revealed by refinement of XRD data. The estimated band gap of pure CuO is found to be ∼1.43 eV, which decreases with the increase of dopant concentration into CuO matrix. This result is in line with estimated crystallite size. Magnetization curves confirm the weak ferromagnetic nature of Cu1-xNixO nanoparticles which reveal the DMS phase. This weak magnetic nature may be induced in the samples due to the exchange interaction between the localized magnetic d-spins of Ni ions and carriers (holes or electrons) from the valence band of pristine CuO lattice. Replacement of Cu+2 by Ni+2 ions into the host CuO lattice induces the magnetization. The quantified value of squareness ratio (S < 0.5) confirms the inter-grain magnetic interactions in the Cu1-xNixO nanoparticles which is also the reason of weak induced magnetization.  相似文献   

14.
The influence of dopant TiO2 and co-dopant MgO on the thermoluminescence (TL) properties of lithium potassium borate glass (LKB) is reported in this paper. The glow curve exhibits a prominent peak (Tm) at 230 °C. The TL intensity was enhanced by a factor of ~3 due to the incorporation of MgO, and this was attributed to the creation of extra electron traps mediated by radiative recombination energy transfer. We achieved good linearity of the TL yield with dose, low fading, excellent reproducibility and a promising effective atomic number (Zeff=8.89), all of which are highly suitable for dosimetry. The effect of heating rate, sunlight and dose rate on the TL are also examined. These attractive features demonstrate that our dosimeter is useful in medical radiation therapy.  相似文献   

15.
Molybdenum oxide nanorods (MOx-NR) and vanadium oxide nanotubes (VOx-NT) have been prepared using MoO3 and V2O5 powders as precursors and hexadecylamine as surfactant via hydrothermal route. Porous nanocrystalline MgO powder has been prepared by a simple and instantaneous solution combustion process using corresponding magnesium nitrate as oxidizer and glycine as fuel. The compounds are characterized by XRD, TG-DTA, SEM, TEM, surface area and porosity measurements. Because of the porous nature having large surface area (107 m2/g) with nanodimension (12-23 nm), MgO powder has been successfully employed as defluoridizing agent for the removal of fluoride (75%) in ground water  相似文献   

16.
Luminescent glasses activated with Sm3+ ions are of current interest given their potential for a wide range of photonic applications. In this work, Sm3+-containing P2O5:BaO glasses are prepared by a simple melt-quench method, and the influence of CuO and SnO co-doping on Sm3+ photoluminescence (PL) is investigated. Optical absorption, solid-state 31P nuclear magnetic resonance spectroscopy, and PL spectroscopy are employed in the assessment of material optical and structural properties. The data indicates that monovalent copper ions and twofold-coordinated Sn centers are successfully stabilized in the matrix and both species can enhance the orange–red emission of Sm3+ ions. The optical properties of the material after heat treatment have been also assessed. Results indicate the chemical reduction of ionic copper via Sn2+ ultimately producing Cu nanoparticles as evidenced by the surface plasmon resonance. As a result, Sm3+ PL diminishes consistent with an excitation energy transfer to plasmonic Cu particles, i.e. the “plasmonic diluent” effect prevails.  相似文献   

17.
Magnetic properties of nanostructured epitaxial thin layers of a series of Co and Li co-doped NiO on MgO(1 0 0) substrate with NiO buffer layer have been investigated. Thin films were synthesized by combinatorial laser molecular beam epitaxy (CLMBE) in the continuous binary composition spread approach. Large and linear variation of x was achieved in the growth of CoxLi0.2Ni0.8−xO, onto 9 mm of single substrate. Homoepitaxial growth with smooth surface morphology was confirmed by grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). Linear decrease in the band gap and optical transparency was observed with increasing cobalt concentration. The magneto-optical Kerr effect revealed a strong photon energy dependency with negative Kerr rotation for all the Co-concentrations in the film, suggesting intra-valence charge transfer (IVCT) between low spin state Co2+ with host Ni2+. Ferromagnetic (FM)-like ordering was observed at low temperatures, while antiferromagnetism predominates at room temperature in the Co and Li co-doped nickel oxide epitaxial films.  相似文献   

18.
Er3+ and Er3+/Yb3+ co-doped tellurite glasses, suitable for developing optical fiber laser and amplifier, have been elaborated from the conventional melt-quenching method. Results of differential scanning calorimetry (DSC) measurements indicate a good thermal stability of tellurite glasses. The DSC measurements show an improvement of thermal stability of glass hosts after adding P2O5. Absorption spectrum from near infrared to visible was obtained and the Judd–Ofelt (J–O) intensity parameters (Ω2, Ω4, and Ω6) were determined. Spontaneous emission probabilities of some relevant transitions, branching ratio, and radiative lifetimes of several excited states of Er3+ have been predicted using intensity J–O parameters. Absorption cross-section and calculated emission cross-section, using the McCumber method, for the 4I13/24I15/2 transition, were determined and compared for the doped and co-doped glasses. Energy transfer (ET) and effect of changing concentration of P2O5 and Yb3+ ions on spectroscopic properties were investigated. It was found that the addition of P2O5 can increase the symmetry of the Er3+ ion. As a consequence, PL lifetime becomes more longer.The spectroscopic properties and the efficient infrared luminescence indicate that Er3+ doped TeO2–ZnO–Na2O–Er2O3(TZNE) is a promising laser and amplifier materials and may be a potentially useful material for developing upconversion fiber optical devices.  相似文献   

19.
The broadband near-IR emission has been investigated in a series of Er/Tm co-doped Bi2O3–SiO2–Ga2O3 (BSG) glasses with 800 nm laser diode as an excitation source. A broadband emission extending from 1350 to 1650 nm with a full width at half maximum (FWHM) around 165 nm is obtained in 0.2 wt% Er2O3 and 1.0 wt% Tm2O3 co-doped BSG glass. The fluorescence decay curves of glasses are measured and maximum energy transfer efficiency from Er3+ to Tm3+ reaches 71% when Tm3+ concentration is 1.0 wt%. The temperature dependence of the broadband emission spectra in Er3+–Tm3+ co-doped BSG glass is also recorded to further understand the energy-transfer processes between Er3+ and Tm3+. The present work suggests that Er/Tm co-doped BSG glasses can be a potential candidate for broadband integrated amplifier.  相似文献   

20.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号