首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

2.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

3.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

4.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

5.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

6.
Using the augmented spherical wave method, the electronic structure and magnetic properties of the rutile SnO2 doped with single and double impurities: Sn1−xMnxO2, Sn1−xWxO2, and Sn1−2xMnxWxO2 with x=0.0625, have been studied. The scalar-relativistic implementation with a generalized gradient approximation functional has been used for treating the effects of exchange and correlation. The ground state of Mn-, and W-doped SnO2 systems have a total magnetic moments of 3 and 2 μB, respectively. The half-metallic nature appears in Sn1−2xMnxWxO2, which makes them suitable as spintronic systems with total magnetic moment of 5 μB. The advantages of doping SnO2 with double impurities are investigated in this work. The total moment of the system, the local magnetic moments of the impurities, and their oxidation states are also discussed. Since there are two possible couplings between the impurities, we studied both configurations (ferromagnetic and antiferromagnetic) for double-impurities-doped SnO2. Magnetic properties and interatomic exchange have been computed for various distances between Mn and W. The indirect exchange between double impurities has similarities with the Zener mechanism in transition metal oxides. Based on the interaction between localized moments, via hybridization between impurities orbitals with the host oxygen, a double exchange mechanism is proposed to explain the ferromagnetism of our system.  相似文献   

7.
Gd-doped SnO2 nanoparticles were chemically prepared doping 0-12.5% Gd into SnO2 and calcined at 600 °C. X-ray diffraction and Fourier transformed infrared spectroscopy measurements show the formation of single phase of Sn1−xGdxO2 up to x=0.0625 while at x=0.125, an additional secondary phase of tetragonal GdO2 (not cubic Gd2O3) is detected. The transmission electron microscopy studies show that the individual particles are single crystalline with an average size in the range of 10-12 nm. Magnetization measurements show the absence of ferromagnetic and antiferromagnetic ordering in all samples; however surface spin effects and enhanced Gd-O-Gd interactions are proposed to account for the observed magnetic properties of the samples.  相似文献   

8.
In this paper the fabrication and characterization of IV-VI semiconductor Pb1−xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1−xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.  相似文献   

9.
Al-doped ZnO powders were synthesized via solid reaction between Zn(OH)2 and Al(OH)3 and consolidated by spark plasma sintering (SPS) to fabricate fine-grained Zn1−xAlxO ceramics as a thermoelectric material. X-ray diffraction and spectrophotometer experiments revealed that Al doping into ZnO is enhanced by the present process, and consequently the SPS-processed Zn1−xAlxO samples show significantly improved electrical conductivity as compared with those prepared via mixing ZnO and Al2O3 oxide powders. Because of the combined effect of Al doping and grain refinement, the present Zn1−xAlxO ceramics show much lower thermal conductivity, which also results in an enhanced dimensionless figure of merit (ZT), than un-doped ZnO oxides prepared also by SPS.  相似文献   

10.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

11.
Spin resonances of the third-order non-linear susceptibility of epitaxial layers of n- and p-type Pb1?xSnxTe and Pb1?xSnxTe/PbTe superlatttices have been observed by four photon mixing of the radiation of two CO2-lasers. Precise data on the effective g-values of the electrons and holes of Pb1?xSnxTe were obtained. These data and the results of magneto-optical interband absorption measurements are used to obtain k·p parameters within the Mitchell and Wallis band model. In the Pb1?xSnxTe/PbTe superlattices, the same g-values for electrons as in the Pb1?xSnxTe films with the same composition x are found. Consequently, the electrons in the superlattices are confined within the Pb1?xSnxTe layers. Therefore the Pb1?xSnxTe/PbTe system forms a type I and not a staggered superlattice.  相似文献   

12.
The ferroelectric compounds Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200-1000 cm−1 three main A1 phonons around 240 (υ1), 630 (υ2) and 816 (υ3) cm−1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm−1, reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ1 mode confirms that in Pb2Na1−xLaxNb5−xFexO15, a clear anomaly occurs in the vicinity of x=0.4.  相似文献   

13.
Tungsten (W)-doped SnO2 is investigated by first-principle calculations, with a view to understand the effect of doping on the lattice structure, thermal stability, conductivity, and optical transparency. Due to the slight difference in ionic radius as well as high thermal and chemical compatibility between the native element and the heterogeneous dopant, the doped system changes a little with different deviations in the lattice constant from Vegard’s law, and good thermal stability is observed as the doping level reaches x = 0.125 in Sn1-x W x O2 compounds. Nevertheless, the large disparities in electron configuration and electronegativity between W and Sn atoms will dramatically modify the electronic structure and charge distribution of W-doped SnO2, leading to a remarkable enhancement of conductivity, electron excitation in the low energy region, and the consequent optical properties, while the visible transparency of Sn1-x W x O2 is still preserved. Particularly, it is found that the optimal photoelectric properties of W-doped SnO2 may be achieved at x = 0.03. These observations are consistent with the experimental results available on the structural, thermal, electronic, and optical properties of Sn1-x W x O2, thus presenting a practical way of tailoring the physical behaviors of SnO2 through the doping technique.  相似文献   

14.
The study of coupled substitution of In3+ by Sn4+/M2+ species in In2O3 has allowed In2−2xSnxMxO3 solid solutions with bixbyite structure to be synthesized for M=Ni, Mg, Zn, Cu and Ca. The latter exhibit a rather broad homogeneity range and are characterized by an ordered cationic distribution. More importantly, these novel oxides are transparent conductors, and among them the Zn and Cu phases show a great potential, since one observes a semi-metallic behavior with conductivity up to 3×102 and 3×103 (Ω cm)−1, respectively, to be compared to 2×103 (Ω cm)−1 for reduced ITO. Moreover, in contrast to the latter no reducing conditions are required for reaching such performances.  相似文献   

15.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

16.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

17.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

18.
Zr-Ti and Hf-Ti composite nitrates were successfully developed as single-source precursors for the chemical vapor deposition (CVD) of ZrxTi1−xO2 and HfxTi1−xO2 thin films. The Zr-Ti nitrate can be assumed as a solid solution of the individual Zr and Ti nitrates, and the Zr/Ti molar ratio in the deposited ZrxTi1−xO2 films is consistent with that in the precursor. The Hf-Ti nitrate appears to be a mixture of the Hf and Ti nitrates and the composition of the deposited HfxTi1−xO2 films depends remarkably on the heating time of precursor. Both ZrxTi1−xO2 and HfxTi1−xO2 films exhibit trade-off properties between band gap and dielectric constant. The obtained results suggest that ZrxTi1−xO2 and HfxTi1−xO2 films are promising candidates for gate dielectric application to improve the scalability and reduce the leakage current of the future complementary metal-oxide-semiconductor (CMOS) devices.  相似文献   

19.
Room-temperature ferromagnetism has been observed in Co- or Mn-doped SnO2 and Co- and F-co-doped SnO2 thin films. A maximum magnetic moment of 0.80μB/Co ion has been observed for Sn0.90Co0.10O1.925−δF0.075 thin films, whereas in the case of Sn1−xMnxO2−δ it was 0.18μB/Mn ion for x=0.10. The magnetization of both Sn1−xCoxO2−δ and Sn1−xCoxO2−yδFy thin films depends on the free carrier concentration. An anomalous Hall effect has been observed in the case of Co-doped SnO2 films. However, the same was not observed in the case of Mn-doped SnO2 thin films. Carrier-mediated interaction is convincingly proved to be the cause of ferromagnetism in the case of Co:SnO2. It is, however, proposed that no carrier-mediated interaction exists in the case of Mn:SnO2. Present studies indicate that dopants and hence electronic cloud-lattice interaction plays an important role in inducing ferromagnetism.  相似文献   

20.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号