首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

2.
The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 Å) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (TS). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at TS=25 °C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co〈1 1 0〉 easy directions. Concerning the samples prepared at TS=200 and 500° C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns.  相似文献   

3.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

4.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

5.
Series Pr0.5Sr0.5MnO3 (PSMO) films of thickness ranging from 20 to 400 nm were epitaxially grown on (0 0 1)-oriented LaAlO3 using pulsed laser deposition method. The biaxial compressive strain effect on phase transition of the films was systematically investigated by both electrical and magnetic measurements. The 60 nm film shows a ferromagnetic metal to antiferromagnetic insulator (FMM-AFI) transition at a temperature of ∼190 K. Such a FMM-AFI transition is depressed as the films become thicker, and finally disappears in the strain-relaxed situation. On the other hand, the Curie temperature is remarkably enhanced (∼50 °C) when the film thickness increases from 60 to 400 nm. These results may yield the possibility to modulate the phase transitions by varying the structural strain.  相似文献   

6.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

7.
We present a study on the adsorption and thermal decomposition of C60 on Co covered Si(111)-7 × 7 using scanning tunneling microscopy and X-ray photoelectron spectroscopy. Co-induced magic clusters grown on Si(111)-7 × 7 are identified as a possible adsorption site where 51 ± 3% of C60 molecules adsorb at room temperature. On Co/Si(111)-7 × 7, C60 molecules start to decompose at 450 °C, and are completely dissociated to form SiC by 720 °C. This temperature is significantly lower than 910 °C at which C60 completely dissociates on clean Si(111)-7 × 7. This is a possible low temperature method for growing crystalline SiC films using C60 as a precursor molecule.  相似文献   

8.
In this work, we have studied thermal stability of nanoscale Ag metallization and its contact with CoSi2 in heat-treated Ag(50 nm)/W(10 nm)/Co(10 nm)/Si(1 0 0) multilayer fabricated by sputtering method. To evaluate thermal stability of the systems, heat-treatment was performed from 300 to 900 °C in an N2 ambient for 30 min. All the samples were analyzed by four-point-probe sheet resistance measurement (Rs), Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and atomic force microscopy (AFM). Based on our data analysis, no interdiffiusion, phase formation, and Rs variation was observed up to 500 °C in which the Ag layer showed a (1 1 1) preferred crystallographic orientation with a smooth surface and Rs of about 1 Ω/□. At 600 °C, a sharp increase of Rs value was occurred due to initiation of surface agglomeration, WSi2 formation, and interdiffusion between the layers. Using XRD spectra, CoSi2 formed at the Co/Si interface preventing W silicide formation at 750 and 800 °C. Meantime, RBS analysis showed that in this temperature range, the W acts as a cap layer, so that we have obtained a W encapsulated Ag/CoSi2 contact with a smooth surface. At 900 °C, the CoSi2 layer decomposed and the layers totally mixed. Therefore, we have shown that in Ag/W/Co/Si(1 0 0) multilayer, the Ag nano-layer is thermally stable up to 500 °C, and formation of W-capped Ag/CoSi2 contact with Rs of 2 Ω/□ has been occurred at 750-800 °C.  相似文献   

9.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

10.
We performed a systematic study on the exchange bias in (1 1 0)-orientated Bi0.9La0.1FeO3/La0.5Ca0.5MnO3 (BLFO/LCMO) heterostructure with a fixed BLFO film thickness of 600 nm and different LCMO layers ranging from t=0 to 30 nm. The LCMO is found to be weakly ferromagnetic, with the Curie temperature descending from ∼225 K to 0 as the layer thickness decreases from 30 nm to 3 nm. The main magnetic contributions come from the BLFO film, and the areal magnetization ratio is 1:0.07 for t=5 nm and 1:0.82 for t=30 nm for BLFO to LCMO at the temperature of 5 K. Further experiments show the presence of significant exchange bias, and it is, at the temperature of 10 K, ∼40 Oe for t=0 and ∼260 Oe for t=30 nm. The exchange bias reduces dramatically upon warming and disappears above the blocking temperature of the spin-glasslike behavior observed in the samples. The possible origin for exchange bias is discussed.  相似文献   

11.
E.L. Wilson  G. Thornton 《Surface science》2006,600(12):2555-2561
Reflection absorption infrared spectroscopy (RAIRS) has been used to investigate the adsorption of CO on CeO2−x-supported Pd nanoparticles at room temperature. The results show that when CeO2−x is initially grown on Pt(1 1 1), a small proportion of the surface remains as bare Pt sites. However, when Pd is deposited onto CeO2−x/Pt(1 1 1), most of the Pd grows directly on top of the CeO2−x(1 1 1). RAIR spectra of CO adsorption on 1 ML Pd/CeO2−x/Pt(1 1 1) show a broad CO-Pd band, which is inconsistent with a single crystal Pd surface. However, the 5 ML and 10 ML Pd/CeO2−x/Pt(1 1 1) spectra show vibrational bands consistent with the presence of Pd(1 1 1) and (1 0 0) faces, suggesting the growth of Pd nanostructures with well defined facets.  相似文献   

12.
The solid-state synthesis of magnetically soft phase FePd3 in epitaxial Pd(0 0 1)/Fe(0 0 1)/MgO(0 0 1) film systems was studied experimentally. The system had a Fe to Pd ratio of 1:3. An increase to 450 °C leads to the formation of three variants of ordered L10-FePd crystallites. At 500 °C, the solid-state reaction of unreacted Pd with L10-FePd crystallites initiates the growth of an ordered epitaxial L12-FePd3(0 0 1) layer. When annealing at 650 °С, a gradual disordering is observed. The magnetic anisotropy (K1=−2.0×103 erg/cm3) and the saturation magnetization (MS=650 emu/cm3) of the disordered FePd3 phase were determined.  相似文献   

13.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

14.
The interaction of gallium with CeO2(1 1 1) layers was studied using standard and resonant photoelectron spectroscopy, by means of both a laboratory X-ray source and tunable synchrotron light. Firstly a 1.5-nm thick CeO2 film was grown on a Cu(1 1 1) substrate. Secondly Ga was deposited in six steps up to a thickness of 0.35 nm, at room temperature. The interaction of gallium with the oxide layer induced partial CeO2 reduction, and gallium oxidation. The photoemission data suggest that a mixed Ga-Ce-O oxide was established similarly to the Sn-Ce-O case for Sn deposited on cerium oxide layers. As a consequence, gallium-induced weakening of Ce-O bonds provides a higher number of active sites on the surface that play a major role in its catalytic behaviour.  相似文献   

15.
Silicon dioxide (SiO2) layers with a thickness more than 10 nm can be formed at ∼120 °C by direct Si oxidation with nitric acid (HNO3). Si is initially immersed in 40 wt.% HNO3 at the boiling temperature of 108 °C, which forms a ∼1 nm SiO2 layer, and the immersion is continued after reaching the azeotropic point (i.e., 68 wt.% HNO3 at 121 °C), resulting in an increase in the SiO2 thickness. The nitric acid oxidation rates are the same for (1 1 1) and (1 0 0) orientations, and n-type and p-type Si wafers. The oxidation rate is constant at least up to 15 nm SiO2 thickness (i.e., 1.5 nm/h for single crystalline Si and 3.4 nm/h for polycrystalline Si (poly-Si)), indicating that the interfacial reaction is the rate-determining step. SiO2 layers with a uniform thickness are formed even on a rough surface of poly-Si thin film.  相似文献   

16.
CoxFe1−x nanowire arrays with various diameters and different composition were fabricated by ac electrodeposition using porous alumina template. Coercivity along the easy axis reaches to a maximum at 2330 Oe, for CoxFe1−x nanowires containing about 40 at% Co. The crystalline structure of the nanowires was concentration-independent and shows a bcc structure. The critical diameter for transition from coherent rotation to curling mode is 35 nm for CoFe containing less than 40 at% Co while it is 30 nm for those with more than 40 at% Co. Optimizing the magnetic properties of CoFe with different Co content was seen to be dependent on the diameter of nanowires. For 25 nm diameter, the optimum was shown below 50 at% Co while it was seen above 50 at% for nanowires with 50 nm diameter. The angular dependence of the coercivity with nanowires diameter were also studied.  相似文献   

17.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

18.
FePt films that have a high degree of order S in their L10 structure (S>0.90) and well-defined [0 0 1] crystalline growth perpendicular to the film plane were fabricated on thermally oxidized Si substrates by the addition of an oxide and successive rapid thermal annealing (RTA). The mechanism of L10 ordering and [0 0 1] crystalline growth perpendicular to the film plane arising through the oxide addition and RTA process is also discussed. The L10 ordering (S>0.90) and the [0 0 1] crystalline growth were achieved by (1) lowering the activation energy due to in-plane tensile stress and the initiation of L10 ordering at a low temperature, (2) [0 0 1] crystalline growth through in-plane tensile stress, and (3) enhancement of atomic diffusion via the addition of an oxide and the resultant lowering of the ordering temperature. Effect (1) was observed in the case of SiO2 addition, effect (2) was generally observed in the case of oxide addition and the RTA process, and effect (3) was prominent in the case of ZnO addition. With the addition of ZnO, the L10 ordering started at below 400 °C and was completed at 500 °C. Finally, dot patterns were successfully fabricated down to a diameter of 15 nm using electron beam lithography, and the magnetic state of the dot pattern was observed by magnetic force microscopy.  相似文献   

19.
A tin layer 0.8 nm thick was deposited onto the CeO2(1 1 1) surface by molecular beam deposition at a temperature of 520 K. The interaction of tin with cerium oxide (ceria) was investigated by X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and resonant photoelectron spectroscopy (RPES). The strong tin-ceria interaction led to the formation of a homogeneous bulk Ce-Sn-O mixed oxide system. The bulk compound formation is accompanied by partial Ce4+ → Ce3+ reduction, observed as a giant 4f resonance enhancement of the Ce3+ species. CeO2 and SnO2 oxides were formed after oxygen treatment at 520 K. The study proved the existence of strong Ce-Sn interaction and charge transfer from Sn to the Ce-O complex that lead to a weakening of the cerium-oxygen bond, and consequently, to the formation of oxygen deficient active sites on the ceria surface. This behavior can be a key for understanding the higher catalytic activity of the SnOx/CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

20.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号