首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The aim of this work is to evaluate the effects of several factors that affect the selective sorting of fine particles in a two-rotating-disks-type tribo-aero-electrostatic separator. The experiments are carried out on a synthetic mixture composed of 50% Acrylonitrile Butadiene Styrene (ABS) and 50% Polystyrene (PS) particles of size 500 to 1000 μm. The six factors under study are: the high voltage, the rotation speed of the disks, the duration of the tribo-charging process, the duration of the separation, the fluidisation air flow rate, and the initial mass of the granular mixture to be processed. The performance of the separator is evaluated by setting up a measurement system that enables the continuous and simultaneous recording of the charges and the masses of the separated products. The conclusions of this study will serve at the optimum design of an industrial electrostatic separator for the recycling of micronized plastics from waste electric and electronic equipment.  相似文献   

2.
A tribo-aero-electrostatic separator has been recently patented for the selective sorting of granular plastics mixtures generated during the recycling of waste electrical and electronic equipments (WEEE). The plastics are tribo-charged in a parallelepiped fluidized bed device, two opposite walls of which being the electrodes that generate the electric field that performs the separation. In two previous papers, different sets of operating parameters of this separator have been studied by hundreds of experiments, in order to improve the efficiency of the process and the purity of the products. The aim of the present paper is to complement these studies by establishing a model for computing the trajectory of plastics granules in such separator. The distribution of electric field and the profile of the airflow between electrodes were expressed using simple analytical formulas, which were introduced in the system of differential equations that served for the calculation of granule trajectories under the action of the various electric and mechanical forces. The computations were performed for various operating parameters: applied-voltage, granule size, charge density. The model can guide the design of industrial tribo-aero-electrostatic separators and the choice of the optimum values of the operating variables of such equipment.  相似文献   

3.
Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5–560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near–steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri–modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10–30 nm) and accumulation (30–300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs ~1.47 × 104 cm−3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and ‘dry’ and ‘wet’ recycling events were measured as ~0.77, 19.1, 22.7 and 1.76 (×104) cm−3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; ~95, 79, 73 and 90% of total PNCs, and ~71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.  相似文献   

4.
Printed circuit board (PCB) scrap has a metal content of nearly 28%, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of content-rich minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. A new process was investigated which involved mechanical crushing, screening, drying and electrostatic separation via corona discharge. The results show that (1) a two-step crushing process could completely strip metals from base plates; (2) the effect of aggregation opposed the production on fine powders; (3) particle sizes between 0.6 and 1.2 mm are most feasible for separation in industrial application; (4) Corona electrostatic separation is an efficient and environmental means for recovering metals from PCBs.  相似文献   

5.
Corona-electrostatic separation is a multi-variable process that has been thoroughly studied in connection with its various applications in the recycling industry. The aim of the present paper is to point out one parasitic phenomenon that adversely affects the efficiency of the separation: the sparks generated at the passage of conductive particles through the electric field zone. The experiments were carried out on a laboratory roll-type corona electrostatic separators, and the sparks were generated by introducing 16 calibrated copper pins in 40-g samples of granular insulating material (PVC; typical granule size: 1.5 mm) that were fed at a constant rate onto the surface of the grounded rotating roll electrode. The distribution of the PVC granules in the 14 boxes of the collector was altered by the occurrence of the spark discharges, as they were accompanied by the annealing of the electric field between the electrodes. The numerical simulation of insulating granules charging and movement under the action of the electric field enabled a better understanding of the interactions between the spark discharges and the other factors that influence their trajectories and affect the efficiency of the separation: roll-speed, particle size and ambient humidity. The particle dynamics equations were solved using an iterative scheme by using the electric field calculated in any point with the commercial software TRICOMP. The good agreement between the predictions made by these simulations and the experimental findings confirms the ability of the mathematical model to reflect the complexity of the physical phenomena.  相似文献   

6.
Three types of unipolar chargers (parallel multi-electrodes, single electrode, and single electrode with compact size) using the soft X-ray were constructed and their charging performance was evaluated by measuring positive, negative, and neutral fractions of size-resolved ultrafine particles (20–100 nm) with the Tandem Differential Mobility Analyzer (TDMA) technique. The unipolar charger with a single electrode and compact size showed the highest charge fraction with least particle loss probably due to lower electrostatic loss of ions among tested chargers. With positive voltage applied to electrode to remove negative ions, we found that the positively charged particles were 43, 52, 62, 69, and 75% for 20, 30, 50, 70, and 100-nm particles, respectively, and a few particles were negatively charged although their fraction increased with size (1, 2, 4, 5, and 6% for 20, 30, 50, 70, and 100-nm particles, respectively). The positive charge fractions were about three times higher than the values estimated theoretically from a bipolar charger. Also, based on comparison of current data with previously reported values using corona discharge unipolar charger, the soft X-ray charger showed better performance in terms of charging efficiency and penetration for particles (NaCl) currently tested in the particle size range of 20–100 nm.  相似文献   

7.
Roll-type electrostatic separators are mostly employed for the selective sorting of conductive and non-conductive constituents of granular mixtures. In case of waste electric and electronic equipment, several conductive materials may be simultaneously present in the composition of the granular mixture to be separated. The aim of this paper is to prove the feasibility of processing an Aluminum/Copper/PVC mixture using a roll-type electrostatic separator. Three high-voltage electrode configurations were studied. Experiments prove that the association of a high-voltage S-shaped plate electrode with a corona wire electrode gives the best separation results. The electric forces pin the corona-charged PVC particles to the roll electrode, while the lighter aluminum and heavier copper particles are diverted to the high-voltage electrode. The aluminum contained in the copper product can be removed by a second pass in a separator that makes use only of the S-shaped electrode. In this way, 75% of the aluminum particles and 99.97% of the PVC particles can be removed, to obtain a 98% pure copper product.  相似文献   

8.
In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2 MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400–600 kHz region, which has high radical production, without detectable impact on product quality.  相似文献   

9.
In this work, a special structural poly(acrylonitrile) (PAN)-based microporous membrane for lithium-ion batteries is prepared from PAN emulsion by simple casting and extracting techniques. It is found that the microporous membrane is fabricated by PAN particles with uniform size (about 580 nm), and a lot of micropores exist among the particles. The Gurley number of the microporous membrane obviously depends on the amount of additive but the porosity does not. The PAN-based microporous membrane is activated by non-aqueous liquid electrolyte to form microporous gel electrolyte (MGE), and its ionic conductivity increases with the decrease of the Gurley number. The resulting MGE shows typical thermal shut-down action because of the swelling–incorporating behaviors of PAN-based particles by the help of the solvent of liquid electrolyte at high temperature. In addition, the electrochemical stability window of the MGE can extend to 5.5 V vs. Li+/Li. The test cell using MGE as separator shows high initial discharge capacity (143 mAh g-1 based on LiCoO2) and high capacity retention ratio (around 94.8% at the 50th cycle). Generally, the special structural microporous membrane is promisingly used to prepare high-safety lithium-ion batteries.  相似文献   

10.
The aim of this paper is to point out the influence of dielectric barrier discharge treatment on tribocharging of granular insulating materials. Particles of Polyvinyl Chloride (PVC) and Polypropylene (PP) were subjected to an AC dielectric barrier discharge (DBD) plasma treatment in ambient airprior to tribocharging in a vibratory device. The charge to mass ratio was measured for treated and untreated materials. Electrostatic separation of a mixture of granular materials (PVC and PP) to measure the effectiveness of DBD treatment was evaluated by processing treated and untreated PVC/PP granular mixtures in a free-fall electrostatic separator. The obtained results clearly indicate that DBD has the capability to influence surface charging proprieties of polymer granular materials. In case of short treatment time, typically less than 3 s, a marked increase in the charge to mass ratios was observed for both PVC (about 35%) and PP (roughly 45%). In the same way, the quantity of DBD-treated materials, recovered after electrostatic separation, was increased by about 104% and 30% for PVC and PP, respectively, as compared to untreated case. The DBD treatment time is a key factor to increase the tribo electric effect.  相似文献   

11.
In this work the effects of polyethylene fluidizing particle size (smaller than 400 μm) on the degree of fluidized bed electrification and wall coating formation was studied. Experiments were conducted in a stainless steel, 0.15 m diameter column, under ambient conditions. Polyethylene resin as received (20–1500 μm) as well as mono-sized and binary mixture of large (600–710 μm) and small (212–300 & 300–425 μm) polyethylene particles were fluidized while their mass, net specific charge and size distribution in the bulk of the bed and the wall coating were measured. For the binary mixture the fraction of the small particles examined were 5%–10% and 20%. The extent of wall coating varied between different cases tested with the mono-sized large particles resulting in the most amount coating. It was found that as the fraction of the small particles in the binary mixture was increased, these particles formed majority of the wall coating. At the mass fraction of 20%, the extent of wall coating and its net specific charge were similar to that of resin as received. Overall results implied that the magnitude of the smaller sized particles within the resin played an important role in the degree of particles electrostatic charging and the extent of the particles adhesion to the column wall. Small particles were found to generate a much larger net specific charge which although resulted in them coating the column wall but prevented the coating layer growth.  相似文献   

12.
Pubic concerns related to particulate matter emissions from animal housing operations are increasing. The goal of this study was to custom develop a simple and low cost electrostatic precipitator (ESP) for poultry dust control. The performance of the improved electrostatic precipitator (iESP) to remove a test aerosol was evaluated under a series of operating voltages between ?60 kV and 60 kV. The mass and size distributions of the particles were measured by a cascade impactor. The overall dust removal efficiency ranged from 37% to 79% with the maximum efficiency obtained at ?30 kV. The iESP shows high removal efficiencies for particles less than 2.1 μm.  相似文献   

13.
The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100 μm) into high iron content part and low iron content part. Two sorts of RM were fed in the HGSMS. The iron oxide contents in concentrates were about 65% and 45% when RM 1# and RM 2# were fed respectively. Meanwhile, the residues contained 52.0% or 14.1% iron oxide in residues after eight separation stages when RM 1# and RM 2# were fed respectively. The mass recovery of iron concentrates was about 10% after once separation process regardless of RM 1# or RM 2# was fed. Extreme fine particles (<10 μm) could be captured in the HGSMS. Intergrowth of Fe and other elements is disadvantages for iron mineral separation from RM by HGSMS. Some improvement should be studied to enhance the efficiency of iron separation. It is possible for HGSMS to separate RM into high iron content part and low iron content part, the former part could be used in iron-making furnace and the later part could be recycling to sintering process for alumina production or used as construction material.  相似文献   

14.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

15.
Wood combustion generates a high concentration of particulate matter emission, but most of the particulates in the exhaust gas can be filtered through an electrostatic precipitator. The objective of this paper is to model the trajectory of particulates in the exhaust chimney of a small scale wood combustion furnace with an electrostatic precipitator. The precipitator consists of a central electrode subjected to a maximum high voltage of 50 kV and an outer electrode of 180 mm diameter, ground potential. The parameters including particle size, ambient temperature, pressure, gas flow rate and the applied voltage have been varied while computing the trajectories of the particles in the chimney. The trajectories of particulates have been analyzed for different sizes of a typical wood combusting stove by taking different forces into account on particulates. The critical conditions give the trajectory of particles as a function of particulate size and applied voltage together with the function of efficiency.  相似文献   

16.
A particle-size sorting system of lunar regolith using an electrostatic traveling wave is developed for In-Situ Resource Utilization on the Moon to extract indispensable resources from the regolith and realize long-term exploration. The regolith is sorted by utilizing a balance between the electrostatic and gravitational forces, which are determined depending on particle size, in vacuum conditions where the particles are not subjected to air drag. In this study, the effect of particle charge on the particle motion is confirmed by conducting model experiments and numerical calculations based on the distinct element method. In addition, it was experimentally demonstrated that particles less than approximately 20 μm in diameter were efficiently separated from the bulk of a lunar regolith simulant FJS-1 in a vacuum condition (∼1.5 × 10−2 Pa), and the performance of the size sorting system on the Moon was predicted by the numerical calculations. The system utilizes only the electrostatic force, and it does not require any gas, liquid, or mechanical moving parts.  相似文献   

17.
Removal of nanometer-sized contaminant particles (CPs) from substrates is essential to successful fabrication of nano scale devices. But the cleaning limit of various current technologies stay around 50 nm. Cryogenic aerosol beam has long been successfully employed to remove CPs down to 50 nm, and supersonic particle beam using particles smaller than 100 nm lowered the limit of cleaning down to 20 nm size. In this study, the particle beam technique that uses nanometer-sized bullet particles moving at supersonic velocity was improved, and successfully employed to remove contaminant particles as small as 10 nm. Ar nano-bullets of about 20–50 nm were generated by gas-phase nucleation, and growth in a supersonic nozzle: appropriate size and velocity of the nano-bullets were obtained by optimizing the Ar/He mixture fraction and nozzle contours. Cleaning efficiency >95% was attained. Nano-bullet velocity was found to be the most important parameter affecting removal of contaminant particles in the 10-nm size range.  相似文献   

18.
Recent studies have raised concerns over applicability of the conventional charging theories to non-spherical particles such as soot aggregates and single-walled carbon nanotube aerosols of complex shape and morphology. It is expected that the role of particle structure and shape on particle diffusion charging characteristics may be significant in the submicron size range for carbon nanotubes (CNTs) and nanofibers (CNFs). In this study, we report experimental data on equilibrium charging characteristics of high-aspect ratio aerosol particles such as CNFs and multi-walled CNTs (MWCNTs) when exposed to a bipolar ion atmosphere. A neutral fraction was measured, i.e., the fraction of particles carrying no electrical charge. A differential mobility analyzer (DMA) was used to classify aerosols, leaving a bipolar radioactive charger to infer the bipolar charging characteristics at different mobility diameters in the submicron size range. The measured neutral fractions for CNF aerosol particles were lower than the corresponding Boltzmann values by 24.4%, 42.0%, and 45.8% for mobility diameters of 400 nm, 600 nm, and 700 nm, respectively, while the neutral fractions for measured aerodynamic diameters of 221 nm, 242 nm, and 254 nm were much lower than those expected by Boltzmann charge distribution, by 43.8%, 63.1%, and 67.3%, respectively. Neutral fractions of spherical particles of polystyrene latex (PSL) and diethylhexyl sebacate (DEHS) particles, measured under identical experimental conditions and procedure, agreed well with the Boltzmann charge distribution. The measured neutral fractions for MWCNT aerosol particles were lower than the corresponding Boltzmann values by 22.3%–25.0% for mobility diameters in the size range from 279 nm to 594 nm. Charging-equivalent diameters of CNF particles correlated well with either mobility diameter or equal-area diameter, which were found to be larger than their mobility or equal-area diameters by up to a factor of 5 in the size range of 400 nm–700 nm, while those of MWCNT particles were larger than the corresponding diameters by a factor of 2 in the size range of 279 nm–594 nm.  相似文献   

19.
In this paper, the technique of electrostatic precipitation was used to remove excess ions from a mixture with charged particles before collection on a filter in a Faraday cup electrometer of an electrical aerosol detector. The ion precipitator part of the detector was designed, constructed, and evaluated. An analytical model was developed to investigate ion and particle transports due to diffusion and space charge effects inside the ion precipitator. Experimental investigations were carried out for positive ions, the positively applied voltage at the wire electrode ranged from 10 to 150 V, ion flow rates ranged from 5 to 15 L/min, and the radial distance of the inlet was 0.15 and 14 mm at a fixed separation between the wire and outer electrodes. The calculation results showed that all charged particles of 10 nm in diameter could pass through the ion precipitator smoothly without precipitation at the outer electrode. For all ion flow rates, an increase in ion trap voltage produced an increase in ion collection efficiency of the precipitator. Experiments confirmed that the efficiency of the ion precipitator could increase to 99% at an ion trap voltage larger than 100 V for all ion flow rates.  相似文献   

20.
Magnetic microspheres are used as mobile substrates in micro-total-analysis systems (μTAS), since the particles can be selectively functionalized to attach different bioconjugates and can be precisely manipulated using external magnetic field gradients. A large number of MEMS-based bio-analytical devices employ magnetophoretic separation as an important step during their operation. An analytical technique is proposed in this paper that describes the magnetophoretic transport of magnetic microspheres under an imposed magnetic field when there is a pressure-driven or electroosmotic flow through a microchannel. Successful magnetophoretic capture occurs if the strength of the field-inducing magnetic dipole exceeds a critical value, or if the particles are larger than a critical size. The magnetophoretic separator performance is characterized in terms of capture efficiency. The analysis shows that the capture efficiency is a function of two independent non-dimensional parameters, λ and γ that in turn involve all the physical design and operating parameters of the microfluidic separator, e.g., the dipole strength, particle size and susceptibility, fluid viscosity and velocity, channel height, and the separation of the dipole. Parametric plots of capture efficiency as function of λ and γ helps in choosing the right design and operation parameter of a practical microfluidic separator for a target level of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号