首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

2.
This article is the second part of a study on flow boiling of R236fa and R245fa. This part presents the heat transfer coefficients obtained in a 12.7 mm silicon evaporator composed of 135 microchannels with 85 μm wide and 560 μm high channels separated by 46 μm wide fins. There were 35 local heaters and temperature measurements arranged in a 5 × 7 array. The heat transfer results were uniform in the lateral direction to the flow (attributable to the inlet restriction) and a function of the heat flux, vapor quality and mass flux. The steady-state standard deviation of the local base temperature was less than 0.2 °C, inferring that the boiling process was very stable. For wall heat fluxes over 45 kW/m2, the heat transfer coefficient curves were V-shaped, decreasing for intermittent flow regimes and increasing for annular flow. The three-zone model of Thome et al. (2004) was the best heat transfer prediction method when setting the dryout thickness equal to the channel roughness.  相似文献   

3.
Flow boiling behaviors in hydrophilic and hydrophobic microchannels   总被引:1,自引:0,他引:1  
Surface wettability is a critical parameter in small scale phenomena, especially two-phase flow, since the surface force becomes dominant as size decreases. In present study, experiments of water flow boiling in hydrophilic and hydrophobic rectangular microchannels were conducted to investigate the wettability effect on flow boiling in rectangular microchannels. The rectangular microchannels were fabricated with a photosensitive glass to visualize flow pattern. The hydrophilic bare photosensitive glass microchannel was chemically treated to obtain a hydrophobic microchannel. And, visualization of flow patterns was carried out. And boiling heat transfer and two-phase pressure drop was analyzed with visualization results. The boiling heat transfer coefficient in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with nucleation site density and liquid film motion. And the pressure drop in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with unstable motions of bubble and liquid film. Finally, we find out the wettability is important parameter on the flow pattern, which were highly related with two-phase heat and mass transfer.  相似文献   

4.
The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co ≈ 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co ≈ 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co ≈ 1 with a transition (or mesoscale) region in-between.  相似文献   

5.
Polydimethylsiloxane (PDMS) is a type of gas permeable media widely used in microfluidic applications. In this work multiphase patterns and boiling curves in PDMS square microchannels were experimentally investigated. Very fine platinum wires with diameter of 50 μm were embedded through the microchannels and serving as heater. The multiphase patterns were visualized by means of high speed CCD camera with microscope. Curves of temperature versus heat flux on the wire heaters were plotted. Based on the evolution of multiphase patterns, five boiling regimes were classified, that is, single phase, bubble formation, slug formation, slug dominated and dry out. Interestingly, the bubbles were generated from the channel walls rather than the heater surface, and so-called “droplets-in-bubble” phenomenon drew attention in which bunches of microdroplets kept forming, growing, and disappearing within the big bubbles. The boiling curves were plotted and compared to boiling in open space and in glass tubes. The heat transfer in the PDMS microchannels got deteriorated when the bubbles formed.  相似文献   

6.
The challenges that microchannel flow boiling technology faces are the lack of understanding of underlying mechanisms of heat transfer during various flow boiling regimes and a dearth of analytical models that can predict heat transfer. This paper aims to understand flow boiling heat transfer mechanisms by analyzing results obtained by synchronously captured high-speed flow visualizations with local, transient temperature data. Using Inverse Heat Conduction Problem (IHCP) solution methodology, the transient wetted surface heat flux and temperature as well as heat transfer coefficient are calculated. These are then correlated with the visual data. Experiments are performed on a single microchannel embedded with fast response temperature sensors located (630 µm) below the wetted surface. The height, width and length of the microchannel are 0.42 mm, 2.54 mm and 25.4 mm respectively. De-ionized, de-gassed water is used as the working fluid. Two heat fluxes are tested at each of the mass fluxes of 182 kg/(m2s) and 380 kg/(m2s). Because of vapor confinement, slug flow is observed for the tested conditions. The present study provides detailed insights into the effect of various events such as passage of vapor slug, 3-phase contact line, partial-dry-out and liquid slug on transient heat transfer coefficient. Transient heat transfer coefficient peaks when thin film evaporation mechanism is prevalent. The peak value is influenced by the distance of bubble incipience as well as downstream events obstructing the flow. Heat transfer coefficient during the passage of liquid slug and 3-phase contact line were relatively lower for the tested experimental conditions.  相似文献   

7.
This research focuses on heat transfer to R-134a during flow boiling in a 1.75 mm internal diameter tube. Flow visualisation and heat transfer experiments are conducted to obtain heat transfer coefficients for different flow patterns. The measured data in each flow regime are compared with predictions from a three-zone flow boiling model. The calculations are in fair agreement with the experimental results which correspond in particular to slug flow, throat-annular flow and churn flow regimes under conditions of low heat flux.  相似文献   

8.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

9.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

10.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

11.
Saturated critical heat flux (CHF) is an important issue during flow boiling in mini and microchannels. To determine the best prediction method available in the literature, 2996 data points from 19 different laboratories have been collected since 1958. The database includes nine different fluids (R-134a, R-245fa, R-236fa, R-123, R-32, R-113, nitrogen, CO2 and water) for a wide range of experimental conditions. This database has been compared to 6 different correlations and 1 theoretically based model. For predicting the non-aqueous fluids, the theoretical model by Revellin and Thome [Revellin, R., Thome, J.R., 2008. A theoretical model for the prediction of the critical heat flux in heated microchannels. Int. J. Heat Mass Transfer 51, 1216–1225] is the best method. It predicts 86% of the CHF data for non-aqueous fluids within a 30% error band. The data for water are best predicted by the correlation by Zhang et al. [Zhang, W., Hibiki, T., Mishima, K., Mi, Y., 2006. Correlation of critical heat flux for flow boiling of water in minichannels. Int. J. Heat Mass Transfer 49, 1058–1072]. This method predicts 83% of the CHF data for water within a 30% error band. Some suggestions have also been proposed in this paper for the future studies.  相似文献   

12.
The study considers algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow, focusing in particular on momentum and heat transfer (so-called ‘convective boiling’) through the annular liquid film. In contrast with single-phase wall-bounded flow theory, shear-driven annular liquid films are assumed here to behave as fluid-bounded flows, mostly interacting with the shearing gas-entrained droplets core flow. Besides providing velocity and temperature profiles through the liquid film, the turbulence model proposed here predicts key parameters such as the average liquid film thickness, the void fraction and the convective boiling heat transfer coefficient with accuracies comparable or better than those of leading design correlations. This turbulence model is part of a unified annular flow modeling suite that includes methods to predict the entrained liquid fraction and the axial frictional pressure gradient. The underlying heat transfer database covers nine fluids (water, two hydrocarbons and six refrigerants) for vertical and horizontal tubes of 1.03-14.4 mm diameter and pressures of 0.1-7.2 MPa. Importantly, this study shows that there appears to be no macro-to-microscale transition when it comes to annular flow. Simply better physical modeling is required to span this range.  相似文献   

13.
Air injection as a stabilization method is evaluated for flow boiling in a micro tube. Pyrex glass tube coated by ITO film is employed as a test tube for flow visualization with water as a working fluid. Air bubble and liquid slug lengths are controlled by changing air and liquid mass velocities. Wall temperatures and inlet/outlet pressures show very large fluctuations during flow boiling without air injection. Severe reverse flow is also observed from flow visualization. On the other hand, wall temperature and inlet/outlet pressures as well as visualized flow patterns become very stable with air injection. In addition, much higher heat transfer coefficients are obtained for air injected cases. It is observed from the flow visualization that the flow becomes much stable and shows regular patterns.  相似文献   

14.
This paper presents the findings of a numerical study on the flow boiling in a micro-channel heat sink. The Navier-Stokes equations, energy equation, and the continuity equation are solved in a finite-volume framework using the front-tracking method. The numerical method is validated by comparison with the experimental results for a slug bubble growth, and vertical flow boiling. The numerical method is then used to study the effect of changing the inflow mass-velocity on the heat transfer coefficient, bubble size distribution, and the bubble nucleation frequency for a constant heat flux. The mean heat transfer coefficient of all the cases is found to be nearly twice that of the single-phase heat transfer coefficient. The bubble nucleation frequency is found to increase monotonically with the inflow mass-velocity. The bubble size distribution along the channel is found to become flatter as the mass-velocity is increased. We identify three distinct phases of the bubble evolution, namely the initial rapid growth phase, the boiling dominant phase, and finally the condensation dominant phase. Subsequently, the numerical method is used to study the effect of having a hot-spot near the bubble nucleation site on the heat transfer characteristics. It is found that the bubble nucleation frequency increases and the bubbles’ maximum volume decreases as the intensity of the hot-spot is increased for a fixed inlet flow rate. It is also observed that the average heat transfer coefficient does not change significantly with changing the intensity of the hot-spot, and that the bubble size distribution along the channel becomes flatter as the intensity of the hot-spot is increased.  相似文献   

15.
The evaporative heat flux distribution in the leading edge region of a moving evaporating thin liquid film of pentane on quartz was obtained by analyzing the measured thickness profile for thicknesses, δ < 2 μm. The profiles in a constrained vapor bubble were obtained using image analyzing interferometry. Although the evaporating meniscus appeared to be benign (i.e., without additional observed motion beyond creeping), high heat fluxes were obtained. Significantly higher heat fluxes are possible. The interfacial slope, curvature, interfacial shear stress, and liquid pressure profiles were also obtained. Results obtained using a continuum model were consistent with those obtained using a control volume model. The measured pressure field profile of the isothermal extended meniscus agreed with the constant pressure field predicted by the augmented Young–Laplace model. For the non-isothermal case, measured thickness gradients lead to disjoining pressure and curvature gradients for fluid flow and evaporation. The experimental results demonstrate that disjoining pressure at the contact line controls fluid flow within an evaporating completely wetting thin curved film and is, therefore, a useful boundary condition. However, in small interfacial systems, non-idealities can have a dramatic effect.  相似文献   

16.
The paper considers the different ways of nucleate boiling investigation, and in particular, presents the analysis of the latest numerical studies of the nucleate boiling primary processes (isolated bubble growth, thin liquid film flow and evaporation near the nucleation site). Many features of the process that were only the hypothesis became established facts after the direct numerical simulation. However, in spite of their undoubted usefulness these investigations cannot be applied for practical calculations. The high complexity of the phenomena comprising nucleate boiling excludes practically the possibility of strict theoretical analysis of the process. Under this situation development of an approximate theory of nucleate boiling retains its validity at present. Such a theory has been developed by the author in 1988. It reveals the main regularities of the nucleate boiling and leads to the predicting equation for heat transfer, which includes two empirical numerical factors. On the basis of the model developed the method of calculation of heat transfer in boiling of binary mixtures is proposed. To improve the existing predicting equations for boiling heat transfer it seems to be especially important to ground theoretically the nucleation sites density dependence on the wall superheat and liquid properties.  相似文献   

17.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

18.
In micro channels, slug flow becomes one of the main flow regimes due to strong surface tension. In micro channel slug flow, elongated bubble flows with the thin liquid film confined between the bubble and the channel wall. Liquid film thickness is an important parameter in many applications, e.g., micro heat exchanger, micro reactor, coating process etc. In the present study, liquid film thickness in micro square channels is measured locally and instantaneously with the confocal method. Square channels with hydraulic diameter of Dh = 0.3, 0.5 and 1.0 mm are used. In order to investigate the effect of inertial force on the liquid film thickness, three working fluids, ethanol, water and FC-40 are used. At small capillary numbers, liquid film at the channel center becomes very thin and the bubble interface is not axisymmetric. However, as capillary number increases, bubble interface becomes axisymmetric. Transition from non-axisymmetric to axisymmetric flow pattern starts from lower capillary number as Reynolds number increases. An empirical correlation for predicting axisymmetric bubble radius based on capillary number and Weber number is proposed from the present experimental data.  相似文献   

19.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to investigate the effects of channel size and mass flux (225–1420 kg/m2s) on microchannel flow boiling regimes by means of high-speed photography. Seven different silicon test pieces with parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm, are considered. Flow visualizations are performed with a high-speed digital video camera while local measurements of the heat transfer coefficient are simultaneously obtained. The visualizations and the heat transfer data show that flow regimes in the microchannels of width 400 μm and larger are similar, with nucleate boiling being dominant in these channels over a wide range of heat flux. In contrast, flow regimes in the smaller microchannels are different and bubble nucleation at the walls is suppressed at a relatively low heat flux for these sizes. Two types of flow regime maps are developed and the effects of channel width on the flow regime transitions are discussed.  相似文献   

20.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号