首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

2.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

3.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.  相似文献   

4.
Solid-state lithium batteries (SSLBs) potentially offer safer and higher energy density batteries than traditional Li-ion batteries, but many challenges remain in the development of high-performance SSLBs. For example, solid-state electrolytes with high ionic conductivity are still critically needed. Composite solid electrolytes (CSEs), which are constituted of ceramic fillers dispersed in polymer matrices, may potentially combine the advantages of ceramic and polymer electrolytes and thus have been intensively investigated. Recent works have found that the size, geometry, and dispersion of ceramic ?llers strongly influence the conductivity of CSEs. This review aims at giving a summary of the recent progresses in CSE including the developments in materials as well as mechanistic characterizations. We believe the latest scientific insights will help the researchers in the field to better design CSEs toward the development of high-performance SSLBs.  相似文献   

5.
Solid polymer electrolytes are a promising alternative to widely used liquid carbonate electrolytes to deliver next-generation lithium-ion batteries with improved safety. However, the limited ionic conductivity and high interfacial resistance with electrodes limit their widespread use. This review aims to give an overview of the recent research on performance aspects and strategies of solid polymer electrolytes, including ionic conductivity, lithium transference number, design flexibility, scale-up, and integration of ionic liquids with a focus on safety.  相似文献   

6.
Significant safety problems and poor cyclic stability of conventional lithium-ion batteries, which based on organic liquid electrolytes, hinder their practical application, while all-solid-state batteries (ASSBs) are considered the most promising candidates to replace traditional lithium-ion batteries. As a critical component of ASSBs, solid-state electrolytes play an essential role in ion transport properties and stability. At present, the solid garnet electrolyte is considered as one of the most promising electrolytes because of its excellent performance. However, it still faces many challenges in ionic conductivity, air stability, electrode/electrolyte interface, and lithium dendrites. Therefore, this review is concerned about the up-to-date progress and challenges which will greatly influence the large-scale application of solid garnet electrolytes. Firstly, various ways to improve the ionic conductivity of solid garnet electrolytes are comprehensively summarized. Then, the stability of solid garnet electrolytes in the air is carefully discussed. Secondly, the latest progress in interface engineering between anode/cathode and solid garnet electrolytes treated by different methods is reported. The formation mechanism and influencing factors of lithium dendrites in the solid garnet electrolyte are systematically focused on. Finally, the development and innovation of composite solid garnet electrolytes and 3D garnet electrolytes are summarized in detail. Some important characterization techniques for studying the aforementioned problems are also summarized. Based on the current development of solid garnet electrolytes and solid-state batteries, further challenges and perspectives are presented.  相似文献   

7.
Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a mesogen-jacketed liquid crystalline polymer(MJLCP)with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide)(PEO)side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations.The block copolymers can self-assemble into ordered morphologies at 200℃.After doping of lithium salts and ionic liquid(IL),ABA-x self-assembles into cylindrical structures.The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points,which significantly improve the mechanical performance of the polymer electrolytes.The ionic conductivity of ABA-x/lithium salt/IL is as high as 10-3 S·cm-1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains.The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher(VTF)equation.In addition,the electrolyte films are flame retardant owing to the addition of IL.The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.  相似文献   

8.
Solid-state electrolytes (SSEs) are capable of inhibiting the growth of lithium dendrites, demonstrating great potential in next-generation lithium-ion batteries (LIBs). However, poor room temperature ionic conductivity and the unstable interface between SSEs and the electrode block their large-scale applications in LIBs. Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than single SSEs, especially in terms of ionic conductivity and interfacial stability. Herein, we have systematically reviewed recent developments and investigations of CSSEs including inorganic composite and organic–inorganic composite materials, in order to provide a better understanding of designing CSSEs. The comparison of different types of CSSEs relative to their parental materials is deeply discussed in the context of ionic conductivity and interfacial design. Then, the proposed ion transfer pathways and models of lithium dendrite growth in composites are outlined to inspire future development of CSSEs.

Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than a single solid-state electrolytes (SSEs), demonstrating great potentials in the next-generation lithium-ion batteries (LIBs).  相似文献   

9.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

10.
未来可穿戴电子器件和系统需要柔性电池提供致密、 安全且可靠的电能源保障. 发展兼具可拉伸性和高离子电导率的固体电解质技术是实现全固态锂电池柔性化, 进而满足上述要求的关键之一. 本文综合评述了提升聚合物基复合固体电解质离子传导性能的主要机制和研究进展, 分析了在不同尺度下解耦离子传导和力学承载功能, 进而在弯折、 拉伸等形变工况下维持离子传导性能稳定的策略, 介绍了有助于推动可拉伸聚合物基复合固体电解质研究的几类先进表征技术, 并展望了未来研究工作的重点方向.  相似文献   

11.
Owing to the serious energy crisis and environmental problems caused by fossil energy consumption, development of high-energy-density batteries is becoming increasingly significant to satisfy the rapidly growing social demands. Lithium-ion batteries have received widespread attention because of their high energy densities and environmental friendliness. At present, they are widely used in portable electronic devices and electric vehicles. However, security aspects need to be addressed urgently. Substantial advances in liquid electrolyte-based lithium-ion batteries have become a performance bottleneck in the recent years. Traditional lithium-ion batteries use organic liquids as electrolytes, but the flammability and corrosion of these electrolytes considerably limit their development. Continuous growth of lithium dendrites can pierce the separator, leading to electrolyte leakage and combustion, which is a serious safety hazard. Replacement of organic electrolytes with solid-state electrolytes is one of the promising solutions for the development of next-generation energy storage devices, because they have high energy densities and are safe. Solid electrolytes can remarkably alleviate the safety hazards involved in the use of traditional liquid-based lithium-ion batteries. In addition, the composite of solid-state electrolytes and lithium metal is expected to result in a higher energy density. However, due to the lack of fluidity of the solid electrolytes, problems such as limited solid-solid contact area and increased impedance at the interface when solid-state electrolytes are in contact with electrodes must be solved. The localized and buried interface is a major drawback that restricts the electrochemical performance and practical applications of the solid-state batteries. Fabrication of a stable interface between the electrodes and solid-state electrolyte is the main challenge in the development of solid-state lithium metal batteries. All these aspects are critical to the electrochemical performance and safety of the solid-state batteries. Current research mainly focuses on addressing the problems related to the solid-solid interface in solid-state batteries and improving the electrochemical performance of such batteries. In this review, we comprehensively summarize the challenges in the fabrication of solid-state batteries, including poor chemical and electrochemical compatibilities and mechanical instability. Research progress on the improvement strategies for interface problems and the advanced characterization methods for the interface problems are discussed in detail. Meanwhile, we also propose a prospect for the future development of solid-state batteries to guide the rational designing of next-generation high-energy solid-state batteries. There are many critical problems in solid-state batteries that must be fully understood. With further research, all-solid-state batteries are expected to replace the traditional liquid-based lithium-ion batteries and become an important system for a safe and reliable energy storage.  相似文献   

12.
锂无机固体电解质*   总被引:15,自引:0,他引:15  
全固态锂离子二次电池具有更大能量密度和更高的安全使用性能,在未来的电动汽车和蓄能电站上有很好的应用前景。本文对一些典型的锂无机固体电解质进行分类讨论,对它们的性能、结构和导电机理进行评述。这些固体电解质具有较高的离子导电率,是目前的研究热点。文章总结了影响其导电率的几个重要因素以及作为理想锂无机固体电解质的几个基本要求。  相似文献   

13.
离子导体嵌段共聚物电解质作为一种固态锂电池导离子材料引起了人们的广泛关注。嵌段共聚物的自组装行为为设计微观尺寸有序结构提供了一种可能。这种有序纳米结构既保证聚合物电解质良好的机械性能,同时又拥有与其它聚合物电解质相当的离子电导率,为进一步组装高性能、易加工的锂电池器件提供了一种可能。本文综述了聚氧化乙烯型嵌段共聚物和单离子型嵌段共聚物,并总结了近期嵌段共聚物电解质的形貌影响离子电导率的实验研究结果,最后评述了嵌段共聚物电解质面临的挑战,并对未来研究进行了展望。  相似文献   

14.
Ionic liquids(ILs) have appeared as the most promising electrolytes for lithium-ion batteries, owing to their unique high ionic conductivity, chemical stability and thermal stability properties. Poly(ionic liquid)s(PILs) with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte. In this review, recent progresses on the applications of IL/PIL-based semi-solid state electrolytes, including gel electrolytes, ionic plastic crystal electrolytes, hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed.  相似文献   

15.
Conventional lithium-ion batteries, with flammable organic liquid electrolytes, have serious safety problems, which greatly limit their application. All-solid-state batteries (ASSBs) have received extensive attention from large-scale energy-storage fields, such as electric vehicles (EVs) and intelligent power grids, due to their benefits in safety, energy density, and thermostability. As the key component of ASSBs, solid electrolytes determine the properties of ASSBs. In past decades, various kinds of solid electrolytes, such as polymers and inorganic electrolytes, have been explored. Among these candidates, organic–inorganic composite solid electrolytes (CSEs) that integrate the advantages of these two different electrolytes have been regarded as promising electrolytes for high-performance ASSBs, and extensive studies have been carried out. Herein, recent progress in organic–inorganic CSEs is summarized in terms of the inorganic component, electrochemical performance, effects of the inorganic ceramic nanostructure, and ionic conducting mechanism. Finally, the main challenges and perspectives of organic–inorganic CSEs are highlighted for future development.  相似文献   

16.
Ion‐conducting block copolymers (BCPs) have attracted significant interest as conducting materials in solid‐state lithium batteries. BCP self‐assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent‐free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid‐state lithium batteries. In this review, we first introduce several fundamental studies of ion conduction in homopolymers for the understanding of ion transport in the conducting domain of BCP systems. Then, we summarize recent experimental studies of BCP electrolytes with respect to the effects of salt‐doping and morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1–16  相似文献   

17.
Lithium-ion batteries have been widely used in daily electric appliance, but abusive accidents occurred from time to time. Lithium-ion batteries composed of various electrolytes (containing organic solvents, inorganic salts), binder, and electrode materials, which may be unstable under some abnormal conditions. The formulation or components of electrolytes played a crucial factor in affecting reactive hazards within the cell. In order to meet safety requirements of the lithium-ion batteries on electronic device, reseachers and scholars are continuing to do further studies on the important issues in relation to the lithium-ion batteries. This study aims to apply the differential scanning calorimeter for measuring the thermal or reactive hazards of the organic solvents related to the formulation of the electrolytes. Besides, thermal instabilities of lithiated graphite or deposited lithium with electrolytes were simulated by the reactions between metallic lithium (Li) and organic carbonates of linear and cyclic structures. Exothermic onset temperatures and enthalpy changes were measured and analyzed. Results showed that the thermal behaviors of these organic carbonates themselves or with lithium hexafluorophosphate liberated less enthalpy changes. However, violent exothermic reactions were detected between the linear or cyclic carbonates and lithium metal with larger enthalpy change larger than 1,000 J g?1 of lithium. This can be observed by Li reacted with diethyl carbonate at surprisingly lower onset temperature about 46.6 °C.  相似文献   

18.
All-solid-state lithium batteries are considered to be a new battery system with great development potential and application prospects due to the advantages of high energy density and high security.As a key component of all-solid-state lithium batteries,the development of solid-state electrolytes has received extensive attention in recent years,but most solid electrolytes still exhibit problems,such as low ion conductivity and poor interface compatibility.The design of composite solid-state electrolyte materials with both excellent electrochemical and mechanical properties is an effective way to develop all-solid-state lithium batteries.This review introduces different types of pure component solid electrolytes and analyzes their respective advantages and characteristics firstly.Furthermore,the research progress of composite electrolytes in preparation method,ionic conduction,suppression of lithium dendrites,and the improvement of electrochemical performances are reviewed from the perspective of composite electrolyte structure design,which is to meet different performance requirements.And the future development direction and trend of composite electrolytes are prospected.  相似文献   

19.
To meet the demand for long-range electric vehicles with high-energy-density batteries,the solid-state batteries(SSBs)have attracted ever-increasing attention due to their enormous potential in affording the energy density greater than 400 W·h/kg.As the key materials,the solid electrolytes can be classified as inorganic electrolyte and organic electrolyte.The former usually has high ionic conductivity,good stability and mechanical properties,whereas being heavy and brittle.The latter is usually flexible,light and easy to mass produce,nevertheless has poor ionic conductivity and stability.Thus,the combination of the organic and the inorganic electrolytes for the composite membranes has become the inevitable trend to achieve the high energy density and safety of lithium batteries.From the perspective of practical application,this paper discusses how to construct the ideal organic-inorganic composite solid electrolyte with low areal specific resistance,thin texture,wide electrochemical window and high safety for applicable SSBs.Furthermore,the critical challenges and future development directions are prospected for the composite solid electrolytes.  相似文献   

20.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号